×
13.01.2017
217.015.8237

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя заключается в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, при этом дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту. Технический результат - повышение информативности способа диагностики сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя. 5 ил.

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях.

Известно, что при проводке (ускорении и/или транспортировке) в вакуумном тракте линейного индукционного ускорителя ИСРПЭ цилиндрического или трубчатого поперечного сечения в ИСРПЭ развиваются поперечные высокочастотные неустойчивости. Они возникают из-за нарушения равновесного состояния ИСРПЭ, например, вследствие периодического воздействия электрических и магнитных полей, формирующихся в повторяющейся протяженной структуре ускорительного тракта, либо - их асимметрии относительно продольной оси тракта при наличии начального радиального смещения ИСРПЭ или в результате взаимной несоосности ускорительных дрейфовых трубок и др. При этом возникают поперечные направлению проводки пучка колебания электронов, приводящие к радиальному расширению ИСРПЭ с дальнейшей потерей части его электронов на стенках тракта. В свою очередь рассеянные на стенки тракта электроны обусловливают вторичную эмиссию электронов, которые могут шунтировать ускорительные зазоры и вызывать поверхностные пробои ускорительных трубок, что в итоге приводит к снижению темпа ускорения ИСРПЭ.

Из области техники известен способ диагностики ИСРПЭ в вакуумном тракте линейного индукционного ускорителя RADLAC-II (статья «MECHANICAL AND MAGNETIC ALIGNMENT TECHNIQUES FOR THE RADLAC-II LINEAR ACCELERATOR», D.J. Armistead, D.L. Bolton, and M.G. Mazarakis, РАС1987), включающий регистрацию амплитуды и формы импульсов тока ИСРПЭ в процессе его проводки с помощью индукционных датчиков тока (поясов Роговского), расположенных по длине и внутри ускорительного тракта. Анализируя от датчика к датчику амплитудно-временные изменения импульсов тока ИСРПЭ, определяют уровни электронных потерь пучка и области попадания потерянных электронов на стенки тракта. По полученным данным определяют возможные причины нарушения равновесного состояния ИСРПЭ.

Недостатком предложенного способа является ограниченная информативность из-за низкого пространственного разрешения, связанного с малым количеством датчиков тока. Увеличение количества датчиков тока внутри тракта усложняет его конструкцию и затрудняет его техническое обслуживание.

Наиболее близким аналогом заявляемого способа диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя является способ, описанный в статье («Transport dynamics of a 19 MeV, 700 kA electron beam in a 10.8 m gas cell», T.W.L. Sanford, et. al, Journal of Applied Physics 70, 1778 (1991); doi: 10.1063/1.349493), включающий регистрацию амплитуды и формы импульсов тока пучка с помощью индукционных датчиков тока, а также дополнительную регистрацию интегральных значений дозы тормозного излучения от рассеянных на стенках тракта электронов из ИСРПЭ, с помощью набора точечных термолюминесцентных дозиметров (ТЛД). ТЛД используются в большем количестве, чем датчики тока и распределены вдоль вакуумного тракта с внешней его стороны. Последующий сопоставительный анализ полученной информации с датчиков тока и дозиметров дает более точную пространственную локализацию области потерь электронов на стенках тракта и их уровень с каждого датчика. Кроме того, ТЛД чувствительны к потерям электронов с высокой энергией и информируют об электронных потерях ИСРПЭ, которые плохо идентифицируются на фоне паразитных вторичных электронных потоков, шунтирующих высоковольтную структуру ускорительного тракта.

Недостатком данного устройства является его ограниченная информативность из-за невозможности определить изменение уровней потерь электронов в течение длительности импульса тока. Кроме того, для получения дозиметрических данных с помощью ТЛД требуется дополнительное время, связанное с их установкой в зонах с повышенным тормозным излучением, опасным для здоровья человека.

Задачей предлагаемого изобретения является повышение информативности способа диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя за счет дополнительного использования рядом с ТЛД сцинтилляционных датчиков, а также - снижение трудозатрат и сокращение времени, необходимого для диагностики пучка благодаря использованию сцинтилляционных датчиков вместо ТЛД после согласования их показаний (калибровки).

Техническим результатом предлагаемого изобретения является возможность проведения как пространственного, так и временного, в течение длительности импульса тока пучка, контроля изменения уровней электронных потерь ИСРПЭ на стенках ускорительного тракта.

Технический результат достигается тем, что в способе диагностики ИСРПЭ в тракте линейного индукционного ускорителя, заключающемся в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью ТЛД, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, новым является то, что дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с ТЛД, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи ТЛД, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока, и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь ИСРПЭ на стенках тракта в течение длительности импульса тока в процессе прохождения ИСРПЭ по ускорительному тракту.

Дополнение измерительных средств набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением позволяет найти моменты временных изменений импульсов ТИ, связанные с электронными потерями ИСРПЭ на стенках тракта и с нарушениями равновесного состояния ИСРПЭ вдоль по тракту. Применение сцинтилляционных датчиков необходимо для фиксации моментов возникновения (завершения) генерации тормозного излучения (ТИ), что важно для конкретизации причин нарушения проводки ИСРПЭ.

Расположение сцинтилляционных датчиков рядом с ТЛД необходимо для калибровки датчиков по интегральной дозе. В период между калибровками использование ТЛД в экспериментах не требуется, что значительно сокращает время измерений. Кроме того, выходные световые сигналы со сцинтилляционных датчиков передаются на расстояния 10÷50 м по оптическим кабелям без значительного ослабления, а также электромагнитных помех, как правило, сопровождающих передачу сигналов по радиочастотным кабелям с детекторов мощности ТИ и присущих конструкциям мощных линейных ускорителей электронов.

Результаты измерений импульсов со сцинтилляционных детекторов сопоставляются с результатами измерений импульсов с токовых датчиков по амплитуде и форме для получения информации об изменении уровней электронных потерь ИСРПЭ на стенках тракта в процессе его прохождения по ускорителю.

Данный способ диагностики ИСРПЭ электронов в тракте мощного линейного ускорителя реализуется на линейном индукционном ускорителе ЛИУ-30, схематически показанном на фиг. 1, где:

1 - инжектор пучка электронов;

2 - пучок электронов;

3 - ускоряющая система;

4 - выводное устройство пучка;

5 - мишенный узел;

6 - датчики тока;

7 - ТЛД;

8 - сцинтилляционные датчики (сцинтилляторы);

9 - регистраторы импульсов с датчиков тока;

10 - регистраторы импульсов со сцинтилляционных датчиков.

На фиг. 2 и фиг. 4 приведены осциллограммы импульсов с датчиков тока в двух разных экспериментах на ЛИУ-30, на фиг. 3 и фиг. 5 приведены соответствующие им осциллограммы импульсов сцинтилляционных детекторов и дозовые значения ТЛД.

ИСРПЭ 2 формируется в инжекторе 1 ЛИУ-30, ускоряется при прохождении ускоряющей системы 3. Далее, перемещаясь по выводному устройству 4, пучок попадает на мишенный узел 5. Из-за поперечных неустойчивостей пучка возникают его поперечные колебания, которые нарушают динамику распространения пучка, изменяют форму импульса тока пучка, приводят к его радиальному расширению с потерей части электронов пучка 2 на стенках тракта.

Датчики тока 6 пучка (секционные индукционные датчики тока), в количестве 10 штук, устанавливаются внутри и вдоль тракта с шагом 2 м. Сцинтилляторы 8 и ТЛД 7 (32 шт.) располагаются с внешней стороны тракта с шагом 0,66 м на том же азимутальном угле, что и датчики тока.

В сцинтилляционных детекторах используются сцинтилляционные датчики с наносекундным быстродействием на основе полистирола с размерами 20×10×5 мм и пластмассовые оптические кабели, передающие свет сцинтиллятора на оптоэлектронные преобразователи, которые подключаются к входам осциллографов 10. ТЛД типа ИС-7, используемые по методике ИКС (индивидуальный контроль с помощью стекол), служат для калибровки сцинтилляционных детекторов по дозе. Они имеют размеры 10×10×1 мм, которые в 10 раз меньше габаритов сцинтилляторов и располагаются в контактной близости с ними.

Формы импульсов с датчиков тока и формы импульсов с выхода сцинтилляционных детекторов регистрируются быстродействующими цифровыми осциллографами TDS3054 (9 и 10).

По фиг. 2 и 4 видно, что токи, соответствующие передней части пучка в двух экспериментах - приближенно одинаковы, однако высокочастотные колебания на задней части импульса тока пучка во втором эксперименте значительно интенсивнее. По степени искажения формы импульса тока можно сказать, что во втором случае ИСРПЭ существенно изменил свое равновесное состояние. По фиг. 3 и 5 видно, что значения доз ТЛД и соответственно потери пучка во втором случае значительно больше. Соответственно сцинтилляционный импульс во втором эксперименте (фиг. 5) существенно отличается по форме и превосходит предыдущий по интегральному значению в ~1.5 раза. Доза ТЛД во втором эксперименте больше примерно во столько же раз. Известно, что интегральное значение сцинтилляционного импульса пропорционально дозе, поэтому сцинтилляционные детекторы можно калибровать по дозе с помощью ТЛД и в дальнейшем сцинтилляционные детекторы могут заменять ТЛД. Характерный «горб» на осциллограмме сцинтилляционного импульса, соответствующий задней части пучка (фиг. 5), коррелирует с появлением высокочастотных радиальных колебаний ИСРПЭ, при которых происходит рассеяние электронов на стенки тракта вблизи расположения сцинтилляционных детекторов.

Таким образом, по амплитуде и форме импульса сцинтилляционного детектора можно судить об изменении уровня потерь ИСРПЭ на стенках в процессе его прохождения по тракту (по наличию характерного «горба»). О величине тока пучка можно судить по форме импульсов с датчиков тока. Анализ осциллограмм со сцинтилляционных детекторов, расположенных в разных точках тракта, позволяет определить наличие отклонения пучка от траектории в данном сечении тракта и степень этого отклонения. Введение сцинтилляционных детекторов позволяет заменить усложняющие конструкцию тракта и затрудняющие его техническое обслуживание датчики тока во многих сечениях тракта. Применение способа диагностики проводки пучка позволяет контролировать изменение уровней электронных потерь ИСРПЭ, на основе которых можно судить о возможных причинах нарушения равновесного состояния пучка (например, отклонения от нормальной работы ускоряющей системы). Особенности форм осциллограмм фиг. 4 и фиг. 5 могут быть связаны с нарушением темпа ускорения электронного пучка по причине отклонения в работе системы синхронизации ускорительных блоков.

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя, заключающийся в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, отличающийся тем, что дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту.
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 798.
13.01.2017
№217.015.71c9

Способ испытаний боеприпасов

Изобретение относится к испытательной технике и может быть использовано при проектировании и отработке новых образцов боеприпасов. Способ включает механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных...
Тип: Изобретение
Номер охранного документа: 0002596552
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73f5

Способ измерения интегральной излучательной способности с помощью прямого лазерного нагрева (варианты)

Изобретение относится к измерительной технике. Способ измерения интегральной излучательной способности заключается в закреплении эталонного образца в виде абсолютно черного тела (АЧТ) и в отдельной вакуумной камере исследуемого образца твердого тела, нагревании эталонного образца указанного...
Тип: Изобретение
Номер охранного документа: 0002597937
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7431

Полимерный матричный материал для кондиционирования низко- и среднеактивных отработанных ионообменных смол

Изобретение относится к полимерным композициям, применяемым в ядерной технике, а именно для кондиционирования низко- и среднеактивных отработанных ионообменных смол (ИОС). Полимерный матричный материал для иммобилизации низко- и среднеактивных отработанных радиоактивных ионообменных смол с...
Тип: Изобретение
Номер охранного документа: 0002597916
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.748d

Оптическая усилительная головка с диодной накачкой (варианты)

Изобретение относится к лазерной технике. Оптическая усилительная головка с диодной накачкой содержит размещенные в корпусе: активный элемент в виде стержня, матрицы лазерных диодов, расположенные равномерно на держателях, и систему охлаждения, содержащую трубку, охватывающую активный элемент с...
Тип: Изобретение
Номер охранного документа: 0002597941
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7720

Электромагнитный поляризованный переключатель

Изобретение предназначено для систем автоматики взрывоопасных объектов, подвергаемым ударным и вибрационным внешним воздействиям. Электромагнитный поляризованный переключатель содержит кожух, внутри которого расположены взаимодействующие магнитная и контактная системы. Магнитная система...
Тип: Изобретение
Номер охранного документа: 0002599625
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.773e

Раскладываемая аэродинамическая поверхность

Изобретение относится к авиационной технике, а именно к раскладываемым аэродинамическим поверхностям летательных аппаратов. Раскладываемая аэродинамическая поверхность содержит соединенные корневую и раскладываемую части. Корневая часть закреплена на поворотной оси раскладываемой...
Тип: Изобретение
Номер охранного документа: 0002599677
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7751

Устройство юстировки сферической оправы оптического элемента

Изобретение относится к элементам конструкции оптических резонаторов, используемых для первоначальной настройки резонатора и стабилизации выходных параметров лазера, и может быть использовано при изготовлении лазерной техники, работающей в условиях внешних воздействующих факторов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002599598
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7753

Мощная оптическая усилительная головка с торцевой диодной накачкой активного элемента в виде пластины

Изобретение относится к твердотельным лазерам с диодной накачкой большой мощности, в частности к элементам накачки и системам их охлаждения. Мощная оптическая усилительная головка с торцевой диодной накачкой активного элемента в виде пластины содержит блок диодной накачки с элементами накачки,...
Тип: Изобретение
Номер охранного документа: 0002599600
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7967

Электродный блок ампульного химического источника тока и способ его сборки

Изобретение относится к резервным химическим источникам тока ампульного типа, задействуемым при впуске электролита из ампулы в электродный блок электрохимических элементов (ЭХЭ). Повышение безопасности, увеличением уровня разрядных характеристик источника тока, а также повышение плотности...
Тип: Изобретение
Номер охранного документа: 0002599147
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.798c

Способ определения масштабных коэффициентов трехосного лазерного гироскопа

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин масштабных коэффициентов трехосных лазерных гироскопов (ТЛГ) с взаимно ортогональными осями чувствительности при проведении калибровки (паспортизации) бесплатформенных инерциальных...
Тип: Изобретение
Номер охранного документа: 0002599182
Дата охранного документа: 10.10.2016
Показаны записи 101-110 из 288.
13.01.2017
№217.015.71c9

Способ испытаний боеприпасов

Изобретение относится к испытательной технике и может быть использовано при проектировании и отработке новых образцов боеприпасов. Способ включает механическое и/или климатическое воздействие на боеприпас и осуществление последующей оценки его состояния по совокупности состояния всех составных...
Тип: Изобретение
Номер охранного документа: 0002596552
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73f5

Способ измерения интегральной излучательной способности с помощью прямого лазерного нагрева (варианты)

Изобретение относится к измерительной технике. Способ измерения интегральной излучательной способности заключается в закреплении эталонного образца в виде абсолютно черного тела (АЧТ) и в отдельной вакуумной камере исследуемого образца твердого тела, нагревании эталонного образца указанного...
Тип: Изобретение
Номер охранного документа: 0002597937
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7431

Полимерный матричный материал для кондиционирования низко- и среднеактивных отработанных ионообменных смол

Изобретение относится к полимерным композициям, применяемым в ядерной технике, а именно для кондиционирования низко- и среднеактивных отработанных ионообменных смол (ИОС). Полимерный матричный материал для иммобилизации низко- и среднеактивных отработанных радиоактивных ионообменных смол с...
Тип: Изобретение
Номер охранного документа: 0002597916
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.748d

Оптическая усилительная головка с диодной накачкой (варианты)

Изобретение относится к лазерной технике. Оптическая усилительная головка с диодной накачкой содержит размещенные в корпусе: активный элемент в виде стержня, матрицы лазерных диодов, расположенные равномерно на держателях, и систему охлаждения, содержащую трубку, охватывающую активный элемент с...
Тип: Изобретение
Номер охранного документа: 0002597941
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7720

Электромагнитный поляризованный переключатель

Изобретение предназначено для систем автоматики взрывоопасных объектов, подвергаемым ударным и вибрационным внешним воздействиям. Электромагнитный поляризованный переключатель содержит кожух, внутри которого расположены взаимодействующие магнитная и контактная системы. Магнитная система...
Тип: Изобретение
Номер охранного документа: 0002599625
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.773e

Раскладываемая аэродинамическая поверхность

Изобретение относится к авиационной технике, а именно к раскладываемым аэродинамическим поверхностям летательных аппаратов. Раскладываемая аэродинамическая поверхность содержит соединенные корневую и раскладываемую части. Корневая часть закреплена на поворотной оси раскладываемой...
Тип: Изобретение
Номер охранного документа: 0002599677
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7751

Устройство юстировки сферической оправы оптического элемента

Изобретение относится к элементам конструкции оптических резонаторов, используемых для первоначальной настройки резонатора и стабилизации выходных параметров лазера, и может быть использовано при изготовлении лазерной техники, работающей в условиях внешних воздействующих факторов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002599598
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7753

Мощная оптическая усилительная головка с торцевой диодной накачкой активного элемента в виде пластины

Изобретение относится к твердотельным лазерам с диодной накачкой большой мощности, в частности к элементам накачки и системам их охлаждения. Мощная оптическая усилительная головка с торцевой диодной накачкой активного элемента в виде пластины содержит блок диодной накачки с элементами накачки,...
Тип: Изобретение
Номер охранного документа: 0002599600
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7967

Электродный блок ампульного химического источника тока и способ его сборки

Изобретение относится к резервным химическим источникам тока ампульного типа, задействуемым при впуске электролита из ампулы в электродный блок электрохимических элементов (ЭХЭ). Повышение безопасности, увеличением уровня разрядных характеристик источника тока, а также повышение плотности...
Тип: Изобретение
Номер охранного документа: 0002599147
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.798c

Способ определения масштабных коэффициентов трехосного лазерного гироскопа

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин масштабных коэффициентов трехосных лазерных гироскопов (ТЛГ) с взаимно ортогональными осями чувствительности при проведении калибровки (паспортизации) бесплатформенных инерциальных...
Тип: Изобретение
Номер охранного документа: 0002599182
Дата охранного документа: 10.10.2016
+ добавить свой РИД