×
13.01.2017
217.015.8197

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННЫХ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к пассивным системам радиоконтроля и может быть использовано в системах местоопределения радиоизлучающих средств. Достигаемый технический результат - снятие ограничения по взаимному пространственному расположению приемных каналов пеленгационных пунктов. Указанный результат достигается за счет того, что используют многопозиционную систему, содержащую минимум два разнесенных в пространстве пункта приема и обработки сигналов (ППОС) и информационно связанный с ними пункт определения пространственных параметров источника радиоизлучения (ПОПП). ППОС содержат по три произвольно расположенных относительно друг друга приемных канала (точки), в каждом из них производится оценка фазы принимаемой волны. При этом ППОС имеют координатную привязку каждого приемного канала (точки) в декартовой системе координат. Значения координат точек приема (каналов) и значения оценки фазы прихода волны в каждом канале поступают на ПОПП, в котором с использованием измеренных значений фаз ИРИ строят фазовые плоскости принимаемого поля каждым ППОС, а координаты ИРИ определяют по координатам середины минимального отрезка, соединяющего прямые нормалей к этим фазовым плоскостям. 2 ил.

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и может быть использовано в системах местоопределения радиоизлучающих средств.

Известен способ местоположения источника радиоизлучения (ИРИ) по фазовому фронту принимаемой волны (см., например, Куприянов А.И., Сахаров А.В. Теоретические основы радиоэлектронной борьбы. - М.: «Издательское предприятие «Вузовская книга», 2007, стр. 33-40, Гришин Ю.П., Ипатов В.П., Казаринов Ю.М. Радиотехнические системы. - М.: «Высшая школа», 1990, стр. 380), основанный на размещении в зоне приема сигналов ИРИ N≥2 пространственно разнесенных пунктов приема и обработки сигналов (ППОС) и информационно связанного с ними пункта определения пространственных параметров (ПОПП) ИРИ, использовании каждым ППОС четырех приемных каналов, размещении четырех приемных каналов каждого ППОС в одной плоскости попарно с взаимно перпендикулярными базами, ориентированными по магнитным полюсам, осуществлении координатной привязки приемных каналов каждого ППОС, передаче значений координат привязки приемных каналов на ПОПП ИРИ, приеме сигнала ИРИ приемными каналами каждого ППОС, определении фаз прихода сигнала ИРИ приемными каналами каждого ППОС и передаче их значений на ПОПП ИРИ, вычислении на ПОПП ИРИ координат местоположения ИРИ относительно координат ППОС.

Недостатком указанного способа является ограничение по взаимному пространственному положению приемных каналов, обусловленное требованиями ортогонального расположения и пространственной ориентации их пар, что не всегда выполнимо в подвижных многопозиционных системах или в труднодоступной местности.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является снятие ограничения по взаимному пространственному расположению приемных каналов пунктов приема и обработки сигналов ИРИ.

Технический результат достигается тем, что в известном способе определения пространственных координат ИРИ, заключающемся в размещении в зоне приема сигналов ИРИ N≥2 пространственно разнесенных ППОС и информационно связанного с ними ПОПП ИРИ, осуществлении координатной привязки приемных каналов каждого ППОС, передаче значений координат привязки приемных каналов на ПОПП ИРИ, определении фаз прихода сигнала ИРИ приемными каналами каждого ППОС и передаче их значений на ПОПП ИРИ, вычислении на ПОПП ИРИ координат местоположения ИРИ относительно координат ППОС, производят в каждом ППОС прием сигнала ИРИ тремя приемными каналами, размещенными произвольно относительно друг друга в одной плоскости, с использованием измеренных значений фаз на ПОПП ИРИ строят фазовые плоскости принимаемого поля каждым ППОС, а координаты ИРИ определяют по координатам середины минимального отрезка, соединяющего нормали к этим фазовым плоскостям.

Сущность изобретения заключается в следующем. Для определения координат местоположения ИРИ используют многопозиционную систему, содержащую минимум два разнесенных в пространстве ППОС и информационно связанного с ними ПОПП. ППОС содержат по три произвольно расположенных относительно друг друга приемных канала (точки), в каждом из которых производится оценка фазы принимаемой волны. При этом ППОС имеют координатную привязку каждого приемного канала (точки). Значения координат точек приема (каналов) и значения оценки фазы прихода волны в каждом канале поступают на ПОПП, в котором с использованием измеренных значений фаз на ПОПП ИРИ строят фазовые плоскости принимаемого поля каждым ППОС, а координаты ИРИ определяют по координатам середины минимального отрезка, соединяющего нормали к этим фазовым плоскостям.

С целью определения пространственных координат в районе энергетической доступности ИРИ устанавливают минимум два ППОС, каждый приемный канал которых имеет координатную привязку в декартовой системе координат. Ориентированы приемные каналы каждого ППОС произвольно относительно друг друга. ППОС также имеют информационные каналы передачи данных на ПОПП, в котором осуществляется определение пространственных координат ИРИ. Информационные данные содержат информацию о значениях координат установки (привязки) приемных каналов и значениях фаз принимаемой радиоволны, определяемых каждым приемным каналом. На фигуре 1 представлена геометрическая схема взаимного расположения приемных каналов (устройств приема и оценки фазы радиоволны) ППОС 1, 2 и ИРИ 3, размещенного в точке И0. ППОС 1, 2 имеют по три приемных канала (точки) П11, П12, П13, П21, П22, П23 (где первый нижний индекс соответствует номеру ППОС 1,2, второй нижний индекс - номеру приемного канала (точки) ППОС), которые образуют плоскости 4, 5. Расстояние между приемными каналами определяется базой или длиной волны принимаемого сигнала (см., например, Гришин Ю.П., Ипатов В.П., Казаринов Ю.М. Радиотехнические системы. - М.: «Высшая школа», 1990, стр. 378-379). Посредством измерения фазы электромагнитной волны в каждом канале формируют соответствующие фазовые плоскости 6, 7 (фазовые портреты). Пространственное местоположение ИРИ 3 определяют по положению координат середины отрезка 8, являющимся кратчайшим расстоянием между прямыми нормалей 9, 10 к плоскостям - фазовым портретам 6, 7, восстановленными (построенными) в соответствии с плоскостными координатами приемных каналов и значениями фазы ЭМВ Р11, Р12, Р13, Р21, Р22, Р23.

На основе координат P11, P12, P13, P21, P22, P23 формируют уравнения пространственно-фазовых плоскостных портретов (фазовых плоскостей) 6, 7 (Беклемешев Д.В. Курс аналитической геометрии и линейной алгебры. - М.: «Высшая школа», 1998, стр. 45-69) и уравнения нормальных векторов 9, 10 к данным плоскостям. Для формирования уравнений прямых 9 и 10, ортогональных плоскостям 6, 7, определяемых через точку и направляющий вектор, в качестве которого рассматриваются вектора нормалей к соответствующим плоскостям, используют их представление в параметрической форме. Точки, через которые проходят соответствующие прямые 9 и 10, определяют как центры тяжести плоскостей с единичной массой в задающих координатах (Беклемешев Д.В. Курс аналитической геометрии и линейной алгебры. - М.: «Высшая школа», 1998, стр. 62-64). Решение определенной системы уравнений (решение по причине громоздкости выражений не приводится) позволяет определить координаты крайних точек И1, И2 кратчайшего отрезка 8 между нормалями 9 и 10 к соответствующим фазовым плоскостям 6, 7 принимаемой волны. А координаты местоположения ИРИ 3 И0 определяют по координатам середины отрезка И1 И2. Следовательно, для нахождения координат местоположения ИРИ необходимо определить координаты середины наименьшего отрезка, соединяющие нормали к фазовым плоскостям принимаемых полей ППОС. При этом приемные каналы ППОС могут быть установлены произвольно как в пространстве, так и относительно друг друга.

На фигуре 2 представлена блок - схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок - схема устройства содержит первый и второй ППОС 11, 12, ПОПП 13 и ИРИ 14.

Устройство работает следующим образом. Первый и второй ППОС 11, 12 предварительно осуществляют координатную привязку приемных каналов, значение координат которых передают по информационным каналам на ПОПП 13. В случае поступления на вход каждого приемного канала ППОС 11, 12 сигнала ИРИ 14 осуществляется определение его фазы, значение которой также передается на ПОПП 13. При этом для организации вычислительного процесса данные, поступившие по информационным каналам, представляются в цифровом виде. На ПОПП 13 производится определение пространственных координат ИРИ 14.

Таким образом, у заявляемого способа появляются свойства, заключающиеся в возможности снятия ограничений по взаимному расположению и ориентации приемных каналов ППОС.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ определения пространственных координат ИРИ, основанный на размещении в зоне приема сигналов ИРИ N≥2 пространственно разнесенных ППОС и информационно связанного с ними ПОПП ИРИ, осуществлении координатной привязки приемных каналов каждого ППОС, передаче значений координат привязки приемных каналов на ПОПП ИРИ, определении фаз прихода сигнала ИРИ приемными каналами каждого ППОС и передаче их значений на ПОПП ИРИ, вычислении на ПОПП ИРИ координат местоположения ИРИ относительно координат ППОС, приеме в каждом ППОС сигнала ИРИ тремя приемными каналами, размещенными произвольно относительно друг друга в одной плоскости, постройке на ПОПП ИРИ с использованием измеренных значений фаз фазовых плоскостей принимаемого поля каждым ППОС и определении координат ИРИ по координатам середины минимального отрезка, соединяющего нормали к этим фазовым плоскостям.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые радиотехнические узлы и устройства. Например, для измерения фаз прихода волны ИРИ каналами каждого ППОС могут использоваться фазовые дискриминаторы (см., например, Коростелев В.В. Пространственно временная теория радиосистем. - М.: «Радио и связь», 1987, стр. 275-281). При этом уровень элементной базы позволяет осуществить комбинирование рассматриваемых радиоэлектронных устройств в единой информационной сети с использованием радионавигационных позиционных систем.

Способ определения пространственных координат источника радиоизлучения, основанный на размещении в зоне приема сигналов источника радиоизлучения N≥2 пространственно разнесенных пунктов приема и обработки сигналов и информационно связанного с ними пункта определения пространственных параметров источника радиоизлучения, осуществлении координатной привязки приемных каналов каждого пункта приема и обработки сигналов, передаче значений координат привязки приемных каналов на пункт определения пространственных параметров источника радиоизлучения, определении фаз прихода сигнала источника радиоизлучения приемными каналами каждого пункта приема и обработки сигналов и передаче их значений на пункт определения пространственных параметров источника радиоизлучения, вычислении на пункте определения пространственных параметров источника радиоизлучения координат местоположения источника радиоизлучения относительно координат каждого пункта приема и обработки сигналов, отличающийся тем, что в каждом пункте приема и обработки сигналов производят прием сигналов источника радиоизлучения тремя приемными каналами, размещенными произвольно относительно друг друга, с использованием измеренных значений фаз на пункте определения пространственных параметров источника радиоизлучения строят фазовые плоскости принимаемого поля каждым пунктом приема и обработки сигналов, а координаты источника радиоизлучения определяют по координатам середины минимального отрезка, соединяющего прямые нормалей к этим фазовым плоскостям.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННЫХ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННЫХ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 211-215 из 215.
13.02.2018
№218.016.2075

Способ определения угловых координат на источник направленного оптического излучения

Изобретение относится к области оптических измерений и касается способа определения угловых координат на источник направленного оптического излучения. Способ включает в себя привязку положения фоточувствительных элементов матричного фотоприемника оптико-электронного координатора к декартовой...
Тип: Изобретение
Номер охранного документа: 0002641637
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.3157

Полуактивная головка самонаведения

Изобретение относится к головкам самонаведения, используемым для формирования сигналов управления высокоточным оружием. Полуактивная головка самонаведения содержит последовательно соединенные многоканальное приемное устройство, сумматор, пороговое устройство, первый селектор импульсов и блок...
Тип: Изобретение
Номер охранного документа: 0002645046
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31a2

Малогабаритный буксировщик воздушных судов с дистанционным управлением

Изобретение относится к наземного обслуживанию воздушных судов. Малогабаритный буксировщик воздушных судов с дистанционным управлением содержит приемник сигнала, микроконтроллер управления, источник питания, сервопривод (19) управляемых колес, управляемые колеса (21), вилки (20) управляемых...
Тип: Изобретение
Номер охранного документа: 0002645175
Дата охранного документа: 16.02.2018
10.05.2018
№218.016.4b7b

Устройство для сжигания топлива в газотурбинном двигателе

Изобретение относится к области турбостроения, в частности к устройствам для сжигания топлива, и может быть использовано в основных камерах сгорания (ОКС) газотурбинных двигателей. Техническим результатом изобретения является снижение неравномерности поля температур в выходном сечении ОКС в...
Тип: Изобретение
Номер охранного документа: 0002651692
Дата охранного документа: 23.04.2018
26.10.2018
№218.016.9663

Аппаратно-программный комплекс для макетирования и отладки цифровых устройств на базе микроконтроллеров различных архитектур

Аппаратно-программный комплекс для макетирования и отладки цифровых устройств на базе микроконтроллеров различных архитектур относится к области вычислительной техники, а именно к диагностическому оборудованию, в частности к техническим средствам, позволяющим производить макетирование цифровых...
Тип: Изобретение
Номер охранного документа: 0002670730
Дата охранного документа: 24.10.2018
Показаны записи 211-220 из 241.
04.04.2018
№218.016.31a2

Малогабаритный буксировщик воздушных судов с дистанционным управлением

Изобретение относится к наземного обслуживанию воздушных судов. Малогабаритный буксировщик воздушных судов с дистанционным управлением содержит приемник сигнала, микроконтроллер управления, источник питания, сервопривод (19) управляемых колес, управляемые колеса (21), вилки (20) управляемых...
Тип: Изобретение
Номер охранного документа: 0002645175
Дата охранного документа: 16.02.2018
29.05.2018
№218.016.56db

Оптический рефлектометр

Устройство оптический рефлектометр относится к области измерительной техники для измерения и контроля параметров оптических волокон (оптическим рефлектометрам) и может быть использовано при прокладке и эксплуатации волоконно-оптических линий связи (ВОЛС), определения типа и местоположения...
Тип: Изобретение
Номер охранного документа: 0002655046
Дата охранного документа: 23.05.2018
12.07.2018
№218.016.70b6

Способ наведения управляемого боеприпаса

Изобретение относится к вооружению, в частности к системам огневого поражения объектов управляемыми боеприпасами. Сущность способа наведения управляемого боеприпаса заключается в подсвете области подстилающей поверхности направленным оптическим излучением в соответствии с известными...
Тип: Изобретение
Номер охранного документа: 0002660777
Дата охранного документа: 09.07.2018
26.07.2018
№218.016.74f5

Устройство для сравнения шкал времени

Устройство относится к области техники для сравнения и синхронизации шкал времени удаленных объектов с применением оптоволоконной линии связи, соединяющей объекты. Устройство выполнено в виде двух составных частей, размещенных на удаленных друг от друга объектах, содержит на первом объекте два...
Тип: Изобретение
Номер охранного документа: 0002662175
Дата охранного документа: 24.07.2018
22.08.2018
№218.016.7e34

Способ повышения разрешения изображения

Способ повышения разрешения изображения заключается в приеме оптического излучения матричным фотоприемником (МФПУ), измерении и запоминании параметров выходных сигналов фоточувствительных элементов (ФЧЭ) МФПУ и формировании по их значениям изображения. При этом одновременно по всем ФЧЭ МФПУ...
Тип: Изобретение
Номер охранного документа: 0002664540
Дата охранного документа: 20.08.2018
24.11.2018
№218.016.a0cd

Способ защиты объектов от телевизионных средств космического наблюдения

Изобретение относится к области защиты объектов путем постановки аэрозольных образований и может быть использовано для маскировки объектов. Определяют параметры метеообстановки, координаты и интенсивность сброса аэрозолеобразующего состава (АОС), формируют аэрозольную завесу (AЗ). Сканируют по...
Тип: Изобретение
Номер охранного документа: 0002673169
Дата охранного документа: 22.11.2018
13.01.2019
№219.016.af38

Способ поиска оптических и оптико-электронных приборов

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без...
Тип: Изобретение
Номер охранного документа: 0002676856
Дата охранного документа: 11.01.2019
23.02.2019
№219.016.c6c3

Способ защиты объектов от радиолокационных огневых комплексов

Изобретение относится к области систем защиты объектов от средств воздушной разведки, прицеливания и наведения путем формирования ложной радиолокационной обстановки и может быть использовано для радиолокационной маскировки индивидуальных и групповых стационарных объектов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002680515
Дата охранного документа: 22.02.2019
03.07.2019
№219.017.a44e

Устройство маскировки объектов

Изобретение относится к средствам снижения заметности вооружения и военной техники и может быть использовано для маскировки и скрытия движущегося или расположенного в пунктах постоянной дислокации и запасных районах рассредоточения наземного вооружения и военной техники от тепловизионных...
Тип: Изобретение
Номер охранного документа: 0002693052
Дата охранного документа: 01.07.2019
10.07.2019
№219.017.a98b

Способ определения координат источника радиоизлучения

Изобретение относится к области радиотехники, а именно к пассивным системам радиомониторинга, и, в частности, может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Технический результат – повышение эффективности определения координат ИРИ забрасываемыми...
Тип: Изобретение
Номер охранного документа: 0002693936
Дата охранного документа: 08.07.2019
+ добавить свой РИД