×
13.01.2017
217.015.80cb

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ГАЗОНЕФТЯНОЙ ПЕРЕХОДНОЙ ЗОНЫ В НЕОБСАЖЕННОЙ СКВАЖИНЕ

Вид РИД

Изобретение

№ охранного документа
0002602249
Дата охранного документа
10.11.2016
Аннотация: Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части залежи. Измеряют пластовые температуру и давление в местах взятия проб пластовых флюидов и определяют плотности и составы взятых проб. Полученные плотности, составы и измеренные значения давления и температуры используют для настройки уравнения состояния углеводородных смесей. Измеряют пористость, водонасыщенность и общее водородсодержание насыщенной породы вдоль ствола скважины. По измеренным значениям пористости и водонасыщенности породы вычисляют объем углеводородных фаз, а по измеренным значениям общего водородсодержания насыщенной породы определяют водородсодержание углеводородных фаз. Используя уравнение состояния углеводородных смесей, вычисляют плотность и состав углеводородных фаз вдоль скважины. По вычисленным значениям плотности и составу углеводородных фаз вдоль скважины определяют удельное водородсодержание в газе и нефти вдоль скважины. На основе определенного удельного водородсодержания, водородсодержания углеводородных фаз и измеренной пористости определяют распределение насыщенностей газа и нефти вдоль скважины. 5 з.п. ф-лы, 2 табл., 4 ил.

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород, то есть для газонефтяных и нефтегазовых месторождений, в частности к способам определения характеристик переходной газонефтяной зоны, таких как распределение насыщенностей газа и нефти вдоль скважины и газонефтяное капиллярное давление.

Газонефтяной контакт (ГНК) - это условная поверхность, разделяющая в нефтяной залежи нефть и газ, находящийся в свободном состоянии в виде газовой шапки. Поверхность газонефтяного контакта условна, поскольку между газовой и нефтяной частью залежи имеется переходная зона смешанного нефтегазонасыщения. В геологическом моделировании есть известные сложности определения положения газонефтяного контакта, связанные со структурой переходной зоны. В большинстве случаев положение ГНК определяется по результатам опробывания на приток флюида. При анализе данных каротажа также возможно идентифицировать ГНК по резкому изменению водородсодержания.

Однако существуют залежи, где геологическое строение не позволяет выделить ГНК в виде четко определенной поверхности, поскольку имеется непрерывное изменение нефте- и газонасыщенности по глубине. В этих случаях говорят о переходной газонефтяной зоне. Переходная зона может простираться по глубине на заметные расстояния (>1 м). В области переходной зоны устанавливается непрерывное вертикальное распределение газа и нефти, которые находятся в термодинамическом и гравитационном равновесии. Составы, давления и насыщенности газовой и нефтяной фаз непрерывно меняются вдоль геологического разреза скважины в соответствии с условиями равновесия.

Для залежей с протяженной газонефтяной переходной зоной необходима детальная информация о структуре этой области для корректной оценки запасов газа и нефти и для обоснованного выбора стратегии разработки.

В настоящее время в практике исследования газонефтяных залежей отсутствуют методы определения параметров протяженных газонефтяных зон (распределения насыщенностей газа и нефти вдоль скважины и газонефтяного капиллярного давления), учитывающие условия композиционного фазового равновесия «газ - нефть».

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности определения условий залегания газонефтяных залежей, в уточнении геологических моделей таких залежей и, как следствие, в более правильном подходе к оценке запасов и проектировании разработки.

В соответствии с предлагаемым способом по меньшей мере одну пробу пластового флюида берут из газовой части залежи и по меньшей мере одну пробу пластового флюида берут из нефтяной части залежи. Измеряют пластовые температуру и давление в местах взятия проб пластовых флюидов и определяют плотности и составы взятых проб пластовых флюидов. Полученные плотности, составы и измеренные значения давления и температуры используют для настройки уравнения состояния углеводородных смесей. Измеряют пористость, водонасыщенность и общее водородсодержание насыщенной породы вдоль ствола скважины. По измеренным значениям пористости и водонасыщенности породы вычисляют объем углеводородных фаз, а по измеренным значениям общего водородсодержания насыщенной породы определяют водородсодержание углеводородных фаз. Используя уравнение состояния углеводородных смесей, вычисляют плотность и состав углеводородных фаз вдоль скважины. По вычисленным значениям плотности и составу углеводородных фаз вдоль скважины определяют удельное водородсодержание в газе и нефти вдоль скважины. На основе определенного удельного водородсодержания, водородсодержания углеводородных фаз и измеренной пористости определяют распределение насыщенностей газа и нефти вдоль скважины.

Плотности и составы взятых проб пластовых флюидов определяют посредством стандартного хроматографического и фракционного анализа.

В качестве уравнения состояния углеводородных смесей используют уравнение состояния Пенга-Робинсона.

Общее водородсодержание насыщенной породы вдоль ствола скважины измеряют методом нейтронного каротажа на тепловых нейтронах.

Пористость и водонасыщенность определяют методами акустического, нейтронного и электрического каротажа.

Из уравнения состояния углеводородных смесей вычисляют распределение давлений в газе и нефти вдоль скважины и определяют кривую капиллярного давления на основе полученных распределений давления и насыщенностей газа и нефти вдоль скважины.

Изобретение поясняется чертежом, где на фиг. 1 представлены распределения пористости, водонасыщенности и водородсодержания, полученные методами геофизического каротажа, на фиг. 2 - составы нефти и газа взятых проб, на фиг. 3 - распределения водонасыщенности и поровый объем, на фиг. 4 - кривая капиллярного давления.

Изобретение состоит в использовании двух источников данных (глубинных проб пластовых флюидов и геофизических исследований скважин) для получения структуры ГНК и кривой газонефтяного капиллярного давления по разрезу вдоль вертикальной или наклонной скважины. Глубинные пробы пластовых флюидов (газа, нефти, воды) берут из газовой и нефтяной части залежи совместно со следующими исследованиями: а) определением пластовых термодинамических условий для обеих проб; б) обычным циклом лабораторных исследований PVT свойств смесей (состав, ССЕ (constant composition expansion, контактная конденсация) и/или CVD (constant volume depletion, дифференциальная конденсация). Лабораторные исследования используют для настройки уравнения состояния, т.е. для количественного определения свободных параметров в этом уравнении, например, уравнении состояния Пенга-Робинсона (см., например, Firoozabadi A. Thermodynamics of Hydrocarbon Reservoirs. New York: McGraw-Hill, 1998, P. 138-143; Reid R.C., Prausnitz J.M., Poling B.E. The Properties of Gases and Liquids. New York: Mc-Graw Hill, 1987, P. 42-47; Walas S.M. Phase Equilibria in Chemical Engineering. Boston: Butterworth Publ., 1985, P. 54-57). Геофизические исследования проводят в необсаженной скважине для определения значений пористости, водонасыщенности и общего водородсодержания насыщенной породы в зависимости от глубины вдоль ствола скважины (например, с помощью комбинации акустического, радиоактивного и электрического каротажа, а также анализа минерального состава породы) (см., например, Bassiouni Z. Theory, Measurement, and Interpretation of Well Logs. Richardson: SPE, 1994, P. 206-224; Bateman R.M. Open-Hole Log Analysis and Formation Evaluation. Boston, 1985, P. 133-146; Darling T. Well Logging and Formation Evaluation. Boston: Elsevier, 2005, P. 29-58; Ellis D.V., Singer J.M. Well Logging for Earth Scientists. Dordrecht: Springer, 2007, P. 629-681; Tittman J. Geophysical Well Logging. Orlando: Academic Press, 1986, P. 19-57. На основе этих данных производят расчет объема и водородсодержания углеводородных флюидов (газа и нефти) вдоль ствола скважины. Объем вычисляют по измеренным значениям пористости и водонасыщенности, а именно по известному значению водонасыщенности рассчитывают насыщенность углеводородных флюидов (газа и нефти), затем с использованием известного значения пористости рассчитывают долю объема, приходящегося на углеводородные флюиды. Водородсодержание углеводородных флюидов рассчитывают вычитанием из общего водородсодержания величин водородсодержания породы и пластовой воды, рассчитанных по химическому составу (как указано выше, минералогический состав предполагается известным).

С использованием уравнения состояния и в предположении гравитационного и термодинамического (химического) равновесия газовой и нефтяной фаз могут быть восстановлены их свойства вдоль скважины: а) удельное водородсодержание для отдельных фаз, б) давления в фазах.

Используя пористость, насыщенность углеводородов, суммарное водородсодержание в углеводородных флюидах и удельное водородсодержание во флюидах по отдельности, можно вычислить распределение насыщенностей газа и нефти в переходной зоне. Комбинируя это распределение с давлениями в фазах, возможно построить кривую капиллярного давления в переходной зоне.

Рассмотрим пример осуществления способа

Глубинные пробы пластовых флюидов были взяты на абсолютных отметках 3241 и 3276 метров соответственно в газовой и нефтяной части залежи. Соответствующие измеренные пластовые давления и температура указаны в Таблице 1:

Составы газа и нефти (в мольных долях) взятых проб, определенные посредством стандартных методов определения состава хроматографического и фракционного анализа (см., например, Speight J.G. Handbook of Petroleum Analysis. New York: John Wiley & Sons, 2001, P. 223-296; Speight J.G. The Chemistry and Technology of Petroleum. Boca Raton: Taylor & Francis Group, 2007, P. 177-238) приведены в Таблице 2 и на фиг. 2.

Полученные данные были использованы для настройки уравнения состояния Пенга-Робинсона, которое широко применяется для описания фазового равновесия газ - жидкость в системах углеводородов.

В результате интерпретации данных комплекса измерений вдоль ствола скважины получены следующие характеристики насыщенной породы: распределение состава породы, пористости, водонасыщенности и общего водородсодержания в абсолютных отметках. Эти параметры могут быть определены известными способами с помощью разных комбинаций методов каротажа. Например, водородсодержание можно определить по нейтронному каротажу на тепловых нейтронах, остальные параметры - по комбинации акустического, электрического и других видов радиактивного каротажа. Распределения пористости, водонасыщенности и водородсодержания представлены на фиг. 1. Водонасыщенность нужна для оценки фактического объема, приходящегося на углеводородные фазы - газ и нефть.

В силу термодинамического и гравитационного равновесия вдоль скважины внутри проницаемой породы летучести компонентов смеси меняются с глубиной по определенному закону (1), связанному с мольной массой компонента смеси mс. Используя уравнение состояния Пенга-Робинсона, можно вычислить составы углеводородных фаз - нефти и газа - на глубине h по известным данным о составе на глубине h0. Затем по известному составу и на основе условий гидростатического равновесия можно рассчитать давление в каждой фазе (нефти и газе). Расчет производится на основе следующих уравнений:

Общая плотность атомов водорода складывается из водородсодержания отдельных фаз (нефти, газа, воды) с учетом насыщенностей, пористости и литологии:

В уравнениях (1)-(4) использованы следующие обозначения: R - универсальная газовая постоянная, g - ускорение свободного падения, Т - температура, v - удельный объем, p - давление, Z1 - состав, φ - пористость, - летучесть, S - насыщенность, H - общее водородсодержание, НА - водородсодержание фазы А, NHi - количество атомов водорода в молекуле компонента i, ZAi - содержание i-го компонента в фазе А.

В результате решения уравнений (1)-(2) вычисляют составы газа и нефти вдоль скважины.

По измеренным значениям пористости и водонасыщенности можно вычислить объем, приходящийся на углеводородные фазы (нефть и газ). По измеренным значениям общего водородсодержания, пористости, водонасыщенности, водородсодержания породы (водородсодержание породы определяют путем вычислений по известной литологии и пористости: количество водорода на единицу объема скелета породы определяют по известному химическому составу, далее, с учетом известной пористости рассчитывают количество водорода на единицу объема породы) при известной литологии по уравнению (4) можно вычислить водородсодержание, приходящееся на углеводородные фазы (нефть и газ). По составу углеводородных фаз, вычисленному в зависимости от глубины вдоль скважины, вычисляют удельное водородсодержание в газе и нефти вдоль скважины (по известному химическому составу фаз вычисляется количество водорода на единицу объема в каждой фазе).

На основе вычисленного удельного водородсодержания в газе и нефти, общего водородсодержания углеводородных фаз и измеренной пористости насыщенной породы вычисляют распределение насыщенностей газа и нефти вдоль скважины (по известному суммарному количеству водорода в нефти и газе, с одной стороны, и по известным удельным значениям количества водорода в нефти и газе по отдельности, с другой стороны, легко оценить относительное объемное содержание нефти и газа в породе). На фиг. 3 приведены водонасыщенность и поровый объем, определенные из интерпретации данных исследования скважины; насыщенность нефти и газа восстановлены с использованием водородсодержания и уравнения (4) с вычислением составов фаз в переходной зоне по уравнениям (1) и (2).

Наконец, зная давления в фазах и насыщенности в зависимости от глубины, можно построить график разности давлений в фазах от насыщенности, что представляет собой кривую капиллярного давления (фиг. 4).


СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ГАЗОНЕФТЯНОЙ ПЕРЕХОДНОЙ ЗОНЫ В НЕОБСАЖЕННОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ГАЗОНЕФТЯНОЙ ПЕРЕХОДНОЙ ЗОНЫ В НЕОБСАЖЕННОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ГАЗОНЕФТЯНОЙ ПЕРЕХОДНОЙ ЗОНЫ В НЕОБСАЖЕННОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ГАЗОНЕФТЯНОЙ ПЕРЕХОДНОЙ ЗОНЫ В НЕОБСАЖЕННОЙ СКВАЖИНЕ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 115.
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.ea29

Диспетчерская централизованная система управления движением железнодорожного транспорта "сетунь"

Изобретение относится к области железнодорожной автоматики и телемеханики. Система содержит первый уровень, включающий контролируемые пункты, которые соединены в закольцованную линейную цепочку, один из них связан с электрической централизацией через контроллеры дискретных сигналов и с блоками...
Тип: Изобретение
Номер охранного документа: 0002628004
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
29.05.2018
№218.016.5830

Оптоволоконный датчик для скважинных сейсмических исследований

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на...
Тип: Изобретение
Номер охранного документа: 0002654973
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5a3c

Способ гидроразрыва углеводородного пласта

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин. Для осуществления гидроразрыва пласта в пробуренную в пласте скважину закачивают жидкость гидроразрыва...
Тип: Изобретение
Номер охранного документа: 0002655513
Дата охранного документа: 28.05.2018
Показаны записи 71-80 из 86.
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.ea29

Диспетчерская централизованная система управления движением железнодорожного транспорта "сетунь"

Изобретение относится к области железнодорожной автоматики и телемеханики. Система содержит первый уровень, включающий контролируемые пункты, которые соединены в закольцованную линейную цепочку, один из них связан с электрической централизацией через контроллеры дискретных сигналов и с блоками...
Тип: Изобретение
Номер охранного документа: 0002628004
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
+ добавить свой РИД