×
13.01.2017
217.015.8072

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в производстве гетерогенных катализаторов, обладающих высокоразвитой поверхностью, и электродов в литий-ионных батареях. Электрохимический способ получения наноразмерных структур оксида титана (IV) включает анодное окисление титанового электрода в ионной жидкости с добавлением воды или пропиленгликоля в атмосфере воздуха. Ионная жидкость имеет общую формулу КА, где К - алкилимидазолий, А - NTf , или PF , или Cl. Анодное окисление проводят при температуре 20-25°C в течение 5-30 минут при постоянном токе 1-10 мА или при постоянном потенциале 1-10 B. Изобретение позволяет получать наночастицы оксида титана в виде наносфер, нановолокон или наностержней в зависимости от условий проведения синтеза. 8 ил., 7 пр.

Предлагаемый способ относится к области электрохимического получения активных форм наночастиц оксидов металлов, конкретно оксида титана (IV), которые могут быть использованы в качестве гетерогенных катализаторов, обладающих высокоразвитой поверхностью, в качестве электродов в литий-ионных батареях.

Наночастицы определяют как твердые частицы с размером в диапазоне 10-1000 нм. Наночастицы привлекают к себе большое внимание в различных областях науки и нанотехнологий из-за их исключительных физико-химических свойств. В зависимости от применяемого метода синтеза могут быть получены наночастицы в виде наностержней, нанотрубок, нанокластеров, наносфер или нанофракталов.

Обычно для синтеза функциональных наноматериалов на основе оксидов металлов используют реакции, протекающие при высокой температуре, такие как лазерное облучение, ионная имплантация, химическое осаждение из вакуума, термическое разложение. Ионные жидкости (ИЖ), которые по определению являются солями, существующими в жидком виде, как правило ниже 100°C, могут быть использованы в качестве термически стабильных и нелетучих растворителей, которые могут быть полезны для сокращения выбросов растворителя по сравнению с обычными летучими органическими соединениями. Различные ионные жидкости на основе катиона имидазолия, в том числе [BMIM][Tf2N] и 1-бутил-3-метилимидазолий хлорид [BMIM]Cl, не только негорючи но и стабильны в широком диапазоне температур: от комнатной температуры до 400°C.

Наноструктуры оксида титана имеют разнообразные применения, например, в фотокатализе, преобразовании солнечной энергии, датчиках и для ВЧ керамики. Синтез оксидов титана различных размера и формы (сферические частицы, нанотрубки и наностержни) был описан в многочисленных исследованиях [Ding, К.L.; Miao, Ζ.J.; Liu, Ζ.M.; Zhang, Ζ.F.; Han, В.X.; An, G.M.; Miao, S. & Xie, Y. (2007). Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. Journal of the American Chemical Society, Vol. 129, No. 20, (May 2007), pp. 6362-6363, ISSN 0002-7863; Choi, H.; Kim, Y.J.; Varma, R.S. & Dionysiou, D.D. (2006). Thermally stable nanocrystalline TiO2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules. Chemistry of Materials, Vol. 18, No. 22, (October 2006), pp. 5377-5384, ISSN 0897-4756; Zheng, W.; Liu, X.; Yan, Z. & Zhu, L. (2009). Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TÍC14. ACS Nano, Vol.3, No. 1, (January 2009), pp. 115-122, ISSN 1936-0851]. Из трех основных полиморфых модификаций оксидов титана (анатаз, брукит, рутил), до настоящего времени исследования были сосредоточены на синтезе наночастиц анатаза. Однако рутил нанометровых размеров привлекает все больше внимания в силу его многообещающего потенциала как фотокатализатора и в качестве электродного материала.

Среди различных способов получения нанооксидов титана особое внимание привлекают синтезы в ионных жидкостях.

Известно, что анатаз с размером частиц 10-20 нм является термодинамически стабильной модификацией ТiО2. Синтез 2-3 нм размера нанокристаллов диоксида титана и их самосборка в мезопористые наносферы ТiО2 был проведен в ионной жидкости в мягких условиях. В результате полученные наноструктуры сочетают в себе преимущества более крупных сфер с высокой удельной поверхностью и узким распределением пор по размерам и, как ожидается, обладают огромным потенциалом в преобразовании солнечной энергии, катализе и оптико-электронных приборах. В типичном синтезе наночастиц TiO2, ионная жидкость 1-бутил-3-метилимидазолий тетрафторборат и ионная жидкость 1-бутил-3-метилимидазолий гексафторфосфат были использованы в качестве растворителя (Antonietti, M.; Kuang, D.В. Smarsly, В. & Yong, Ζ. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angewandte Chemie, International Edition, (2004). Vol. 43, No. 38, pp. 4988-4992; Zhou, Y. & Antonietti, M. Synthesis of very small TiO2 nanocrystals in a roomtemperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. Journal of the American Chemical Society, (2003). Vol. 125, No. 49, pp. 14960-14961).

Методика состоит в получении прекурсора титана, осаждении геля оксида титана с дальнейшим высушиванием оксида титана. Смешивают 1 мл тетрахлорида титана с ионной жидкостью [BMIM]+BF4-. После гомогенизации смеси к ней медленно добавляют при сильном перемешивании при комнатной температуре 2 мл дистиллированной воды. Гидролиз тетрахлорида титана происходит сразу, что видно по появлению взвеси. Взвесь перемешивают при 80°C в течение 12 часов. Для выделения продукта полученную эмульсию разбавляют водой до объема 20 мл с целью уменьшения вязкости ИЖ. Полученные наноструктуры осаждают центрифугированием. Остаточную ИЖ, содержащуюся в продукте, отмывают ацетонитрилом в закрытом сосуде при 50°C в течение 8 часов. Процесс экстракции ИЖ повторяют до полного ее удаления из осадка. Окончательный продукт сушат в вакууме при 40°C.

Недостатком предложенного способа является длительность процесса приготовления и техническая сложность процесса очистки получаемых наноструктур от ИЖ.

Предложен способ синтеза наноматериалов с заданными свойствами, включающий обработку реакционной смеси исходных жидкостного и твердотельного компонентов источником СВЧ-излучения в импульсном режиме генерации. В качестве жидкой фазы реакционной смеси применяют ионные жидкости состава К+А- с температурой плавления ниже 97,5°C и термической стабильностью выше 150°C. В качестве основного компонента твердой фазы используют микро-, моно- и поликристаллы эпитаксиальных подложек основной фазы формирующихся нанокристаллических матриц (патент РФ №2360314 C1, 28.03.2008). Получают наночастицы контролируемого размера в пределах 100-200 нм. Недостатком данного способа являются сложная многостадийная технология, высокое энергопотребление. Кроме того, в источнике не указаны возможные ионные жидкости.

Известен способ получения частиц физическим осаждением из паровой фазы в ионной жидкости. Изобретение относится к получению частиц, в частности наночастиц, в ионной жидкости. Устройство для реализации способа содержит камеру осаждения и сосуд для ионной жидкости. Способ получения наночастиц включает введение ионной жидкости состава К+А- в камеру осаждения; вакуумирование камеры осаждения для образования вакуума в интервале от 1 и 7 микронов Hg; и распыление одного или более катодов в камере осаждения для направления одного или более материалов по направлению к ионной жидкости для образования наночастиц в ионной жидкости. Катионы могут включать моно-, ди- и трехзамещенные имидазолии; замещенные пиридинии; замещенные пирролидинии; тетраалкилфосфониии; тетраалкиламмонии; гуанидинии; изоуронии и тиуронии. Анионы могут включать хлориды; бромиды; йодиды; тетрафторбораты; гексафторфосфаты; бис(трифторметилсульфонил)имиды; трис(пентафторэтил)трифторофосфаты (FAP); трифторметансульфонаты; трифторацетаты; метил сульфаты; октилсульфаты; роданиды; органобораты и пара- толуолсульфонаты. Конкретные неограниченные примеры: IL включают 1-бутил-3-метилимидазолия гексафторфосфат ([BMIM]PF6), 1-гексил-3-метилимидазолия тетрафторборат ([HMIM]bf4), 1-бутил-3-метилимидазолия тетрафторборат ([BMIM]BF4), 1-этил-3-метилимидазолия трифторметан сульфонамид ([EMIM](CF3SO2)2N). Технический результат - упрощение способа и повышение качества получаемых частиц (патент RU 2404024 С2, 17.01.2007). Недостатками этого способа являются жесткий контроль вязкости ионной жидкости и сложная многостадийная технология.

Анодные процессы представляют относительно недорогие методы получения высокоорганизованных оксидных материалов для различных применений.

Авторы (Langmuir 2009, 25, 509-514, Abu Ζ. Sadek, Haidong Zheng, Kay Latham, Wojtek Wlodarski, and Kourosh Kalantar-zadeh) получали пористый оксид титана в нейтральном электролите, содержащем фторид аммония (0.5%) и этиленгликоль (0.5%), в интервале потенциалов 3-20 В без перемешивания. В отсутствие фторид-ионов на поверхности титана образуется тонкий барьерный слой оксида, который препятствует росту оксидного слоя за счет падения напряжения, что приводит к снижению тока окисления. В присутствии фторид-ионов могут образовываться комплексные соединения титана (IV) состава [TiF6]2-, которые препятствуют осаждению ТiО2 (или гидратированного оксида состава Ti(OH)xOy). Это приводит к тому, что травление поверхности продолжается, что вызывает рост тока на начальной стадии. В дальнейшем скорость образования и растворения оксида титана становятся равны и толщина барьерного слоя стабилизируется. Влияние напряжения выражается в изменении диаметра пор. При напряжении 5 В диаметр составляет 10 нм, а для напряжения 10 В - 20 нм. Недостатком описанного способа является использование водных растворов, также не вполне определено, что такое нейтральный электролит.

Наиболее близким к предлагаемому способу по совокупности существенных признаков является способ получения нанотрубок оксида титана в ионных жидкостях (Jun Qu, Huimin Luo, and Sheng Dai. U.S. Patent 8,585,886, November 19, 2013). В патенте заявлено использование различных ИЖ общей формулы К+-, где К+ выбирают из замещенных имидазолиев, пиридиния, четвертичного аммония со фторсодержащими анионами из , , и др. Метод состоит в том, ионную жидкость 1-бутил-3-метилимидазолий тетрафторборат (BMIMBF4) смешивают с дистиллированной водой в весовом отношении 0.276:1 и полученный раствор используют в качестве электролита. Рабочим электродом служит титановая фольга толщиной 0.5 мм, поверхность которой предварительно тщательно очищают ацетоном и этанолом. Фольгу помещают в двухэлектродную ячейку. Вспомогательным электродом является платиновая пластина. Напряжение выбирают в ряду от 0 до 40 В. Синтез проводят при комнатной температуре (21°C). В течение электролиза поддерживают постоянное напряжение. Оптимизацию осуществляют подбором времени. Зависимость тока от времени фиксируют с помощью миллиамперметра. В начале синтеза ток составляет около 2 мА, постепенно падает за 80 минут до 0.5 мА, после чего резко возрастает до 20 мА, что служит сигналом окончания синтеза.

Недостатком этого способа является, что в качестве электролита используют смесь ионной жидкости с водой, хотя не все упомянутые в патенте ИЖ являются гидрофильными и способны смешиваться с водой в заявленных количествах, например ИЖ с анионом трифлатимида (NTf2).

Задачей предлагаемого способа является получение оксида титана (IV) на титановом аноде в нанодисперсном состоянии.

Поставленная задача решена данным изобретением.

Электрохимический способ получения наноразмерных частиц оксида титана (IV) включает анодное окисление титанового электрода в ионной жидкости общей формулы К+А- при температуре 20-25°C в течение 5-30 минут, при постоянном токе 1-10 мА или при постоянном потенциале 1-10 В и в атмосфере воздуха. К+ выбирают из алкилимидазолия, алкилпиридиния, алкилпиперидиния и др. А- выбирают из , , , Cl- и др.

В предлагаемом способе в качестве растворителя выбрана ионная жидкость, поскольку она обладает достаточной электропроводностью, что в общем случае не требует введения постороннего фонового электролита. В то же время ионные жидкости характеризуются большими «окнами» электрохимической устойчивости (от -2 до +2 В относительно потенциала хлорсеребряного электрода) и одновременно выполняют роль среды, формирующей и стабилизирующей наночастицы оксидов металлов. Высокая вязкость ионной жидкости способствует тому, что в ее присутствии формирование наночастиц оксидов металлов происходит в виде отдельных зерен на поверхности электрода, а не в виде тонкого слоя из компактного оксида.

В предлагаемом способе к растворителю (ионной жидкости) добавляют воду или пропиленгликоль. Образующиеся при анодном растворении титана ионы Ti4+ в присутствии воды образуют аквакомплексы состава [Тi(Н2О)4]4+, которые при гидролизе образуют оксид титана. Гликоли и полиолы также имеют важное значение в синтезе хорошо охарактеризованных наноструктурных оксидных материалов, поскольку они являются хелатирующими лигандами иона металла, что позволяет контролировать скорость гидролиза алкоксидов переходных металлов (Chem. Soc. Rev., 2012, 41, 5313-5360, T. Fröschl, U. Hörmann, P. Kubiak, G. Kučerova′, M. Pfanzelt, C. K. Weiss, R. J. Behm, N. Hüsing, U. Kaiser, K. Landfesterd, M. Wohlfahrt-Mehrens). Гликоляты состава Ti(OC(CH3)H2CH2O)2+ в предлагаемом способе образуются in sity.

В качестве катода могут быть использованы электроды, например, из платины, графита, стеклоуглерода, меди, кобальта и других материалов, обладающих достаточной электропроводностью и не взаимодействующих с ионной жидкостью. Электродом сравнения является серебряная проволока

Электрохимическое анодирование титана проводят в атмосфере воздуха.

Перечень иллюстративных материалов.

На рис. 1 представлены микрофотографии частиц оксида титана (по данным Journal of the American Chemical Society, (2003). Vol. 125, No. 49, pp. 14960-14961). На рис. 1 видны нанокристаллы оксида титана размером 2-3 нм, объединенные в сферы большего размера с высокоразвитой поверхностью. Полученные наночастицы имеют сферическую форму и достаточно узкое распределение частиц по размерам.

На рис. 2 представлена микрофотография фрагмента титанового анода, полученная через 5 мин воздействия анодным током плотностью 0.6 мА·см-2 в ионной жидкости BMIMCl в присутствии добавки воды (объемное отношение V(H2O):V(ИЖ)=0.1:1) в атмосфере воздуха при температуре 25°C. На рис. 2 четко видна волокнистая структура оксида титана. Длина волокон может составлять от 0.1 до нескольких микрон, толщина волокон соответствует приблизительно 100 нм.

На рис. 3 представлена микрофотография фрагмента титанового анода, полученная через 5 мин воздействия анодным током плотностью 0.6 мА·см-2 в ионной жидкости BMIMNTf2 в присутствии добавки воды (объемное отношение V(H2O):V(ИЖ)=0.1:1) в атмосфере воздуха при температуре 25°C. На рис. 3 на поверхности титанового электрода видны неупорядоченно расположенные сферические образования оксида титана размером от 50 до 200 нм.

На рис. 4 представлена микрофотография фрагмента титанового анода, полученная через 7 мин воздействия анодным током плотностью 0.6 мА·см-2 в ионной жидкости BMIMCl в присутствии добавки пропиленгликоля (объемное отношение 1:1) в атмосфере воздуха при температуре 25°C. На рис. 4 на поверхности титанового электрода видны неупорядоченно расположенные сферические образования оксида титана размером от 50 до 200 нм.

На рис. 5 представлена микрофотография фрагмента титанового анода, полученная через 30 мин воздействия анодным током плотностью 6 мА·см-2 в ионной жидкости BMIMNTf2 в присутствии добавки пропиленгликоля (объемное отношение 1:1) в атмосфере воздуха при температуре 25°C. На рис. 5 на поверхности титанового электрода видны неупорядоченно расположенные наноразмерные образования оксида титана в виде стержней размером от 50 до 200 нм, диаметром 50-100 нм.

На рис. 6 представлена микрофотография фрагмента титанового анода, полученная через 15 мин воздействия анодным током плотностью 2.5 мА·см-2 в ионной жидкости BMIMCl в присутствии добавки воды (объемное отношение V(Н2О):V(ИЖ)=0.1:1) в атмосфере воздуха при температуре 25°C. На рис. 6 четко видна волокнистая структура оксида титана. Длина волокон может составлять от 0.1 до нескольких микрон, толщина волокон соответствует приблизительно 50-100 нм.

На рис. 7 представлена микрофотография фрагмента титанового анода, полученная через 15 мин воздействия анодным током плотностью 9 мА·см-2 в ионной жидкости BMIMCl в присутствии добавки воды (объемное отношение V(H2O):V(ИЖ)=0.1:1) в атмосфере воздуха при температуре 25°C. На рис. 7 четко видна волокнистая структура оксида титана. Длина волокон может составлять от 0.1 до нескольких микрон, толщина волокон соответствует приблизительно 100 нм.

На рис. 8 представлена микрофотография фрагмента титанового анода, полученная через 30 мин анодного воздействия при Е=5B в ионной жидкости BMIMPF6 в присутствии добавки воды (объемное отношение V(Н2О):V(ИЖ)=0.1:1) в атмосфере воздуха при температуре 25°C. На рис. 8 четко видны наночастицы двух видов: сферические с плотной адгезией с подложкой и стержни толщиной около 50 нм и длиной около 200 нм.

Данные, полученные при анодном электрохимическом воздействии на титановый анод в среде ионной жидкости, свидетельствуют о том, что в результате этого процесса на поверхности титана образуются наночастицы оксида титана в виде наносфер, нановолокон или наностержней в зависимости от условий проведения синтеза.

Предложенный способ иллюстрируется следующими примерами.

Пример 1

Электрохимическое получение оксида титана проводили из раствора ионной жидкости 1-бутил-3-метил имидазолий хлорида BMIMCl, содержащего дистиллированную воду в объемном отношении (V(H2O):V(BMIMCl)=0.1:1). Процесс проводили при температуре 25°C в течение 5 мин при плотности тока 6 мА·см-2. В качестве анода использовали титановую фольгу (S=0.4 см2) и в качестве катода никель. Электрод сравнения - серебряная проволока.

Данные электронной микроскопии титанового анода (рис. 2) получены через 5 мин анодного воздействия. На рис. 2 видны продукты полного окисления титана с высокоразвитой поверхностью на электроде из титана. На рис. 2 видна волокнистая структура оксида титана. Длина волокон может составлять от 0.1 до нескольких микрон, толщина волокон соответствует приблизительно 100 нм. Согласно данным элементного анализа содержание кислорода (61-63% атомных), титана (24-27% атомных) и оставшееся - адсорбированный хлорид-ион.

Пример 2

В условиях эксперимента, аналогичных примеру 1, синтез наноразмерных частиц оксида титана проводили из раствора ионной жидкости 1-бутил -3-метил имидазолий трифлатимида BMIMNTf2, содержащего дистиллированную воду в объемном отношении (V(H2O):V(BMIMNTf2)=0.1:1) с использованием никелевого катода и анода из титановой фольги (S=0.4 см2) в течение 5 мин при плотности тока 6 мАсм-2 при температуре 25°C.

Обнаружено покрытие поверхности анода неупорядоченно расположенными сферическими образованиями оксида титана размером от 50 до 200 нм (рис. 3).

Пример 3

В условиях эксперимента, аналогичных примеру 1, синтез наноразмерных частиц оксида титана проводили из раствора ионной жидкости 1-бутил-3-метил имидазолий хлорида BMIMCl, содержащего пропиленгликоль в объемном отношении (V(пропиленгликоль):V(BMIMCl)=1:1). Процесс проводили при температуре 25°C в течение 7 мин при плотности тока 6 мА·см-2. В качестве анода использовали титановую фольгу и в качестве катода - никель. Электрод сравнения - серебряная проволока.

Обнаружено покрытие поверхности титанового анода неупорядоченно расположенными сферическими образованиями оксида титана размером от 50 до 200 нм (рис. 4).

Пример 4

В условиях эксперимента, аналогичных примеру 1, синтез наноразмерных частиц оксида титана проводили из раствора ионной жидкости 1-бутил-3-метил имидазолий трифлатимида BMIMNTf2 содержащего пропиленгликоль в объемном отношении (V(пропиленгликоль):V(BMIMNTf2)=1:1). Процесс проводили при температуре 25°C в течение 30 мин при плотности тока 6 мА·см-2. В качестве анода использовали титановую фольгу и в качестве катода никель. Электрод сравнения - серебряная проволока.

Обнаружено покрытие поверхности титанового электрода неупорядоченно расположенными наноразмерными образованиями оксида титана в виде стержней размером от 50 до 200 нм (рис. 5).

Пример 5

Электрохимическое получение оксида титана проводили из раствора ионной жидкости 1-бутил-3-метил имидазолий хлорида BMIMCl, содержащего дистиллированную воду в объемном отношении (V(H2O):V(BMIMCl)=0.1:1). Процесс проводили при температуре 25°C в течение 15 мин при плотности тока 2.5 мА·см-2. В качестве анода использовали титановую фольгу (S=0.4 см2) и в качестве катода никель. Электрод сравнения - серебряная проволока.

Данные электронной микроскопии титанового анода (рис. 6) получены через 5 мин анодного воздействия. На рис. 6 видны продукты полного окисления титана с высокоразвитой поверхностью на электроде из титана. На рис. 6 видна волокнистая структура оксида титана. Длина волокон может составлять от 0.1 до нескольких микрон, толщина волокон соответствует приблизительно 100 нм. Согласно данным элементного анализа содержание кислорода (61-63% атомных), титана (24-27% атомных) и оставшееся - адсорбированный хлорид-ион.

Пример 6

Электрохимическое получение оксида титана проводили из раствора ионной жидкости 1-бутил-3-метил имидазолий хлорида BMIMCl, содержащего дистиллированную воду в объемном отношении (V(H2O):V(BMIMCl)=0.1:1). Процесс проводили при температуре 25°C в течение 15 мин при плотности тока 9 мА·см-2. В качестве анода использовали титановую фольгу (S=0.4 см2) и в качестве катода никель. Электрод сравнения - серебряная проволока.

Данные электронной микроскопии титанового анода (рис. 7) получены через 5 мин анодного воздействия. На рис. 7 видны продукты полного окисления титана с высокоразвитой поверхностью на электроде из титана. На рис. 7 видна волокнистая структура оксида титана. Длина волокон может составлять от 0.1 до нескольких микрон, толщина волокон соответствует приблизительно 50 нм.

Пример 7

Электрохимическое получение оксида титана проводили из раствора ионной жидкости 1-бутил-3-метил имидазолий гексафторфорфата BMIMPF6, содержащего дистиллированную воду в объемном отношении (V(H2O):V(BMIMPF6)=0.1:1). Процесс проводили при температуре 25°C в течение 30 мин при потенциале Е=5B. В качестве анода использовали титановую фольгу (S=0.4 см2) и в качестве катода никель. Электрод сравнения - серебряная проволока.

Данные электронной микроскопии титанового анода (рис. 8) получены через 30 мин анодного воздействия. На рис. 8 видны продукты полного окисления титана с высокоразвитой поверхностью на электроде из титана. На рис. 8 четко видны наночастицы двух видов: сферические с плотной адгезией с подложкой и стержни, толщиной около 50 нм и длиной около 200 нм.

Электрохимический способ получения наноразмерных структур оксида титана (IV) в виде наносфер, нановолокон или наностержней, включающий анодное окисление титанового электрода в ионной жидкости общей формулы КА, где К - алкилимидазолий, А - NTf , или PF , или Cl, с добавлением воды или пропиленгликоля в атмосфере воздуха, отличающийся тем, что анодное окисление проводят при температуре 20-25°C в течение 5-30 минут при постоянном токе 1-10 мА или при постоянном потенциале 1-10 B.
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА ТИТАНА (IV)
Источник поступления информации: Роспатент

Показаны записи 41-50 из 50.
25.08.2017
№217.015.ce7f

Адсорбент для сернистого газа

Изобретение относится к адсорбентам для улавливания, концентрирования и хранения сернистого газа. Адсорбент содержит носитель - мезопористый силикат МСМ-41 с удельной поверхностью около 1300 м/г и активный компонент - карбонат натрия в количестве 20-30 вес.% от общей массы адсорбента....
Тип: Изобретение
Номер охранного документа: 0002620793
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d52b

Способ получения катализатора и способ гидрогенизационной конверсии диоксида углерода в жидкие углеводороды с его использованием

Изобретение относится к технологии переработки газообразного углеводородного сырья, а именно к способу получения катализатора для гидрогенизационной конверсии диоксида углерода в жидкие углеводороды, который включает нанесение наночастиц металлического кобальта на поверхность пористого...
Тип: Изобретение
Номер охранного документа: 0002622293
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.ec26

Дикатионные ионные жидкости с полисилоксановым фрагментом в составе катиона в качестве теплоносителей

Изобретение относится к области жидких теплоносителей. Предложены дикатионные ионные жидкости с полисилоксановым фрагментом в составе катиона общей формулы (I), где R и R - метил или фенил, R- CH или (СН), n=3-8, в качестве теплоносителей. Технический результат – предложенные новые дикатионные...
Тип: Изобретение
Номер охранного документа: 0002627658
Дата охранного документа: 09.08.2017
29.12.2017
№217.015.f106

Способ приготовления катализатора для получения синтез-газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез-газа из метана с его использованием

Изобретение относится к технологии переработки газообразного углеводородного сырья. Описан способ приготовления катализатора для получения синтез-газа, который включает электрохимическую обработку в ионной жидкости бутилметилимидазолий ацетат BMIMAc и последующее нанесение методом...
Тип: Изобретение
Номер охранного документа: 0002638831
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.fe17

Катализатор конверсии природного или попутного газа в синтез-газ в процессе автотермического риформинга и способ его получения

Изобретение относится к газохимии и касается получения синтез-газа из природного/попутного газа в процессе автотермического риформинга, в частности к катализатору и способу получения катализатора автотермического риформинга. Катализатор имеет удельную площадь поверхности в прокаленном состоянии...
Тип: Изобретение
Номер охранного документа: 0002638534
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.00a3

Способ получения пористого координационного полимера mof-177

Изобретение относится к способу получения пористых координационных полимеров структуры MOF-177. Способ включает смешение соли - ацетата цинка и 1,3,5-трифенилбензол-p,p',p''-трикарбоновой кислоты, взятых в массовом соотношении 2,5-4,5:1, в присутствии растворителя, в количестве, достаточном для...
Тип: Изобретение
Номер охранного документа: 0002629361
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0cde

Способ получения синтез-газа из co

Изобретение относится к технологии переработки газового сырья, в частности к способу получения синтез-газа, который может быть в дальнейшем использован для процессов синтеза метанола. Способ получения синтез-газа в ходе гидрогенизационной конверсии CO включает контактирование исходного газового...
Тип: Изобретение
Номер охранного документа: 0002632701
Дата охранного документа: 09.10.2017
13.02.2018
№218.016.268e

Способ получения акриловой кислоты

Изобретение относится к одностадийному способу газофазного окисления пропана с образованием акриловой кислоты в присутствии смешанного металлоксидного катализатора в избытке кислорода воздуха по отношению к пропану. Изобретение также относится к области электротехники и может быть...
Тип: Изобретение
Номер охранного документа: 0002644158
Дата охранного документа: 08.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
Показаны записи 61-70 из 216.
10.03.2016
№216.014.cae5

Магнитный гаситель самостоятельного дугового разряда

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую металлическую проволочку,...
Тип: Изобретение
Номер охранного документа: 0002577040
Дата охранного документа: 10.03.2016
20.02.2016
№216.014.cd9f

Способ получения легированных поли[(r)карбинов] (r=h, алкил, арил)

Изобретение относится к области производства сверхтвердых материалов, а именно к способу получения легированных поли[(R)карбинов], где R=Н, алкил, арил. Способ заключается в том, что смесь содержащего тригалоидметильную группу органического соединения CXR, где X=Cl, Br; R=Н, арил, алкил, и...
Тип: Изобретение
Номер охранного документа: 0002575711
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cdb1

Способ электрохимического стереоселективного α-гидроксиалкилирования глицина

Изобретение относится к области органической химии и электрохимии, конкретно к способу стереоселективного α-гидроксиалкилирования глицина путем введения его в виде основания Шиффа в координационную сферу комплекса Ni(II) с хиральным лигандом ((S)-2N-(N′-бензилпролил)аминобензофеноном), после...
Тип: Изобретение
Номер охранного документа: 0002575710
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cded

Полимерные наночастицы состава фермент-поликатион-полианион, содержащие антиоксидантный фермент, для применения в медицине и способ их получения

Группа изобретений относится к химической энзимологии, к способу создания дисперсии, содержащей полимерные наночастицы с инкапсулированным антиоксидантным ферментом, в частности к получению водной дисперсии наночастиц состава супероксиддисмутаза/поликатион/полианион, которая предназначена для...
Тип: Изобретение
Номер охранного документа: 0002575836
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ce74

Способ получения искусственных алмазов

Изобретение относится к получению искусственного алмаза, который может быть использован в тяжелой промышленности. Перед загрузкой в пресс фуллерен С60 выдерживают в течение 30 минут в потоке водорода, затем помещают в контейнер из пирофиллита один или вместе с поли[гидридо(Н)карбином] в...
Тип: Изобретение
Номер охранного документа: 0002575713
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e881

Ферментный биокатализатор для нейтрализации фосфорорганических соединений in vivo

Изобретение относится к биотехнологии, в частности к ферментному биокатализатору в виде наноразмерных частиц, представляющих собой нековалентные полиэлектролитные комплексы, образованные полигистидинсодержащим полипептидом с активностью органофосфатгидролазы и блок-сополимером полиэтиленгликоля...
Тип: Изобретение
Номер охранного документа: 0002575627
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3152

Способ получения наноразмерных порошков лекарственных веществ и устройство для его осуществления

Группа изобретений относится к способу получения наноразмерных порошков лекарственных веществ, включающему перевод исходного вещества в газовую фазу, организацию направленного потока молекул соединения и последующую конденсацию вещества в виде наноразмерных частиц на охлаждаемой поверхности, и...
Тип: Изобретение
Номер охранного документа: 0002580279
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.40ec

Многоканальный оптоволоконный нейроинтерфейс для мультимодальной микроскопии мозга животных

Многоканальный оптоволоконный нейроинтерфейс для мультимодальной микроскопии относится к устройствам, обеспечивающим получение в эндоскопическом режиме оптических изображений биологических тканей, в частности, головного мозга свободноподвижных лабораторных животных. В устройстве торец...
Тип: Изобретение
Номер охранного документа: 0002584922
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.427d

Способ анализа цитохрома с в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Настоящее изобретение относится к области биоаналитических исследований и представляет собой способ анализа цитохрома С в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеяния (ГКР), включающий подготовку митохондрий и их нанесение на подложку на основе...
Тип: Изобретение
Номер охранного документа: 0002585118
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4341

Датчик размораживания продуктов на основе оранжевого каротиноидного белка

Датчик размораживания продуктов, подлежащих хранению при температурах, исключающих размораживание и последующее перезамораживание, имеет герметичную оболочку с расположенным в ней элементом индикации размораживания продуктов. Элементы индикации изготовлены из раствора фотоактивного оранжевого...
Тип: Изобретение
Номер охранного документа: 0002585464
Дата охранного документа: 27.05.2016
+ добавить свой РИД