×
13.01.2017
217.015.800a

СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области геологии, а именно к средствам определения угла наклона и направления падения трещин в керновом материале, в частности к способу для определения элементов залегания трещин и границ пластов в керне. Техническим результатом является повышение эффективности и точности. Предложен способ определения угла наклона и направления падения трещин в керновом материале, в котором выкладывают на неподвижный лоток керновый материал, вдоль которого перемещают устройство, определяющее расстояние пересечения кернового материала трещинами. При этом первоначально у образцов кернового материала проводят оценку первичного состояния, затем керновый материал состыковывают с образованием керновой колонки 4 и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки 4. Далее керновый материал моют и помещают керновую колонку 4 на неподвижный лоток, затем с помощью персонального компьютера с соответствующим программным обеспечением устанавливают параметры съемки и последовательно производят сканирование участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180°+2-3°. Затем сканирующий блок возвращают на исходную позицию, керновую колонку накрывают вторым фиксирующим лотком и производят поворот фиксирующих лотков с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А». Далее сканируют сторону «Б» аналогично процессу сканирования стороны «А», т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой всей отсканированной поверхности керновой колонки. Далее, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» отмечают выявленные трещины, после чего по координатам выявленных трещин рассчитывают углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки. 4 з.п. ф-лы, 9 ил.
Реферат Свернуть Развернуть

Изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» относится к области геологии, в частности к способам для определения элементов залегания трещин и границ пластов в керне.

Известен способ определения сопротивляемости сдвигу пород по трещинам в скальных породах, включающий измерение в массиве скальной породы углов наклона выступов поверхности трещин, извлечение образца, сдвиг его при различных нормальных напряжениях и определение предельной сопротивляемости сдвигу (см. описание к Авт. Св. СССР №1338575, опубл. 27.11.2001, E21C 39/00, G01N 3/24).

Однако такой способ не дает возможности определения углов наклона и направления падения трещин непосредственно в керновом материале, поскольку проводят непосредственно в массивах скальных пород.

Ивестен также описанный в заявке РСТ FR 97/00925 и в Российской заявке №98103464/09 (дата публикации заявки: 10.01.2000, МПК G01V 3/38, G06K 9/50, G06T 1/00) метод автоматического определения стратификационных слоев в породе по изображениям скважины или развертке керна этой породы, при котором каждое изображение представляется в виде полосы боковой стенки скважины или керна с привязкой к вертикальной оси у по глубине и к горизонтальной оси х по азимутам и образуется множеством линий или колонок, каждая из которых направлена по оси у, начиная с точек, расположенных вдоль оси х, и представляет значение параметра, связанного с характеристикой этой стенки, измеренной в зависимости от глубины, при этом боковая стенка скважины или керна воспроизводится путем объединения N изображений стенки, отличающийся тем, что сегментируется каждое из N изображений стенки, использующихся для воспроизведения изображения боковой стенки скважины или керна.

Недостатком известного способа является сложность и отсутствие возможности определения угла наклона и направления падения трещин в керновом материале.

Данный недостаток обусловлен тем, что приводится только определение стратификационных слоев в породе по изображениям одной боковой стенки скважины или керна.

Известен принятый за прототип способ определения угла наклона и направления падения трещин в керновом материале, реализованный устройством для определения углов падения и простирания трещин и границ пластов на керне (См. Патент РФ на ПМ №139738, МПК Е21В 47/02, опубл. 20.04.2014), когда керн выкладывали на ложе таким образом, чтобы в начальной точке измеряемого керна большая ось эллипса наклона пластов лежала в вертикальной плоскости вдоль основания. Азимут наклона пластов в данной точке принимали равным нулю и брали его привязочным для измерения углов в других точках. Контроль истинного азимута падения пластов производили по структурной карте или данным скважинных имиджеров. По рельсовым направляющим вдоль ложа с керном перемещали тележку, по мере продвижения которой проводили с помощью шкал измерения на рельсовых направляющих и определяли расстояние (глубину вскрытия) пересечения керна трещинами и границами пластов от начала керна, стрелки измерительных шкал выставляли против трещины или границы пластов таким образом, чтобы эти стрелки образовывали одну плоскость с измеряемыми объектами (трещиной или границей пласта), по одним измерительным шкалам определяли угол наклона образованной плоскости к оси керна , а по другим измерительным шкалам определяли угол поворота лимбов (β) относительно нулевого азимута. На основании полученных данных определяли истинные углы падения, простирания трещин и границ пластов как функции от данных инклинометрии скважины и от углов поворота лимбов относительно нулевого азимута (β) и наклона образованной плоскости к оси керна .

Недостатком известного способа являются высокая трудоемкость и низкая точность и эффективность

Данный недостаток обусловлен тем, что трудоемкое перемещение тележки вручную по рельсовым направляющим вдоль ложа с керном, по мере продвижения которой проводили с помощью шкал измерения на рельсовых направляющих и определяли расстояние (глубину вскрытия) пересечения керна трещинами и границами пластов от начала керна, когда стрелки измерительных шкал выставляли против трещины или границы пластов, занимает очень много времени, присутствуют большие погрешности, влияющие на точность и эффективность.

Задачей заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» является повышение эффективности и точности определения угла наклона и падения трещин на керновом материале посредством получения качественного цифрового изображения развертки поверхности кернового материала.

Техническим результатом предлагаемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» является повышение эффективности, точности эксплуатационных и технических качеств.

Поставленный результат достигается тем, что в известном способе определения угла наклона и направления падения трещин в керновом материале, который выкладывают на неподвижный лоток, вдоль которого перемещают устройство, определяющее расстояние пересечения кернового материала трещинами, согласно изобретению первоначально у образцов кернового материала проводят оценку первичного состояния, после чего керновый материал состыковывают с образованием керновой колонки и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки, затем керновый материал моют, промытый керновый материал сушат в течение 6-10 часов при комнатной температуре, после чего помещают керновую колонку размером кратным метру, на неподвижный лоток, затем с помощью персонального компьютера с соответствующим программным обеспечением устанавливают параметры съемки, как то: светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования, после этого последовательно производят сканирование (фотографирование) в автоматическом режиме всех участков равной длины, сканирование участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180° +2-3° и после того, как сканировали первый участок «L1» по всей дуге «Н» керновой колонки от 0 до 180° +2-3° первой стороны «А» кернового материала, сканирующий блок продвигают вперед и вновь повторяют операцию сканирования на участке «L2» по всей дуге «Н» керновой колонки от 0 до 180° +2-3°) первой стороны «А» кернового материала, и так повторяют сканирование до конца стороны «А» керновой колонки по всей длине «L», затем сканирующий блок возвращают на исходную позицию, керновую колонку накрывают вторым фиксирующим лотком и производят поворот фиксирующих лотков с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А», далее сканируют сторону «Б» аналогично процессу сканирования стороны «А», т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой всей отсканированной поверхности керновой колонки, далее, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» отмечают выявленные трещины, после чего по координатам выявленных трещин рассчитывают углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки.

Между отличительными признаками и достигаемым техническим результатом существует следующая причинно-следственная связь.

В отличие от аналогов и прототипа использование в предлагаемом изобретении «Способ определения угла наклона и направления падения трещин в керновом материале» образцов кернового материала, у которого проводят оценку первичного состояния, а затем этот керновый материал состыковывают с образованием керновой колонки и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки, относительно которой определяют азимут падения трещины как угол между условной линией Z-Z и концом проекции вектора направления трещины на плоскость, перпендикулярную оси керна, отложенный по часовой стрелке. Далее керновый материал моют проточной водой, после чего промытый керновый материал сушат в течение 6-10 часов при комнатной температуре, что позволяет выявить все трещины в керновом материале и направления их падения, что повышает достоверность наличия трещин, а также эффективность исследования кернового материала. Размещение керновой колонки размером, кратным метру, на неподвижном лотке, повышает удобство работы с керновым материалом, что в свою очередь повышает производительность и, одновременно, качество исследовательских работ. Использование персонального компьютера с соответствующим программным обеспечением, устанавливающего четкие параметры съемки, как то: светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования, позволяет в отличие от объектов-аналогов и объекта-прототипа получать высококачественное цифровое изображение в дневном и ультрафиолетовом свете, по результатам обработки которого определяется угол наклона трещин в керновом материале. Проведение в автоматическом режиме поочередного сканирования участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180° +2-3°) позволяет не только быстро сканировать участки, но и, одновременно, делать определенные допуски для склеивания снимков кернового материала сторон «А» и «Б» и выведения четкой картины исследуемого кернового материала по цилиндрической образующей боковой стороны керновой колонки. Последовательное сканирование первого участка «L1» по всей дуге «Н» керновой колонки от 0 до 180° +2-3° первой стороны «А» кернового материала, а затем второго и последующих участков по всей дуге «Н» керновой колонки от 0 до 180° +2-3° первой стороны «А» по всей длине «L» керновой колонки до конца стороны «А» керновой колонки позволяет получать высококачественное цифровое изображение в дневном и ультрафиолетовом свете каждого участка и, при необходимости, исследовать структуру кернового материала в определенных координатах. Возвращение сканирующего блока на исходную позицию, когда керновую колонку, накрыв вторым фиксирующим лотком, поворачивают с фиксирующими лотками и с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А», позволяет аналогично стороне «А» отснять сторону «Б» и произвести наложение границ без сдвига, т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой цифрового изображения всей отсканированной поверхности керновой колонки, это позволяет повысить технические качества, снизить погрешность результатов, а также повысить эффективность способа. Использование программного обеспечения на плоской развертке сторон «А» и «Б» поверхности керновой колонки позволит четко отметить выявленные трещины и далее, по координатам выявленных трещин, точно рассчитать углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения «Способ определения угла наклона и направления падения трещин в керновом материале», позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем существенным признакам заявленного технического решения. По имеющимся у заявителя сведениям, совокупность существенных признаков заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» не известна из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» критерию "новизна". Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности признаков аналога позволило выявить совокупность существенных, по отношению к усматриваемому заявителем техническому результату, отличительных признаков в заявляемом изобретении «Способ определения угла наклона и направления падения трещин в керновом материале», изложенных в формуле изобретения. Следовательно, заявляемое изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» соответствует критерию "новизна".

Для проверки соответствия заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» критерию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить совокупность признаков, совпадающих с отличительными от прототипа признаками заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале». Результаты поиска показали, что заявляемое изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» преобразований для достижения технического результата. Следовательно, заявленное изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» соответствует критерию "изобретательский уровень".

Таким образом, изложенные сведения свидетельствуют о выполнении при использовании в заявленном изобретении «Способ определения угла наклона и направления падения трещин в керновом материале» совокупности условий в том виде, как заявляемое изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» охарактеризовано в формуле «Способ определения угла наклона и направления падения трещин в керновом материале» при осуществлении изобретения способны обеспечить достижение усматриваемого заявителем технического результата, а именно получение высококачественного цифрового изображения в дневном и ультрафиолетовом свете, по результатам обработки которого определяется угол наклона и направления падения трещин в керновом материале. Кроме того, использование предлагаемого устройства для осуществления способа определения угла наклона и направления падения трещин в керновом материале обеспечивает возможность сканирования керновой колонки с диаметром от 30 до 120 мм с автоматическим контролем диаметра, т.е. повышение эксплуатационных и технических качеств с учетом простоты конструкции и высокой эффективности работы установки, а также дополнительных технических результатов в виде повышения эксплуатационных возможностей, в частности произведение сканирования (фотографирования) в автоматическом режиме всех участков равной длины керновой колонки, расположенной на лотке, следовательно, заявленное изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» соответствует критерию "промышленная применимость".

Совокупность существенных признаков, характеризующих сущность изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» может быть многократно использована в технологичном и одновременно нетрудоемком и точном процессе определения угла наклона и направления падения трещин в керновом материале с получением технического результата, заключающегося в высококачественном цифровом изображении в дневном и ультрафиолетовом свете, по результатам обработки которого определяется угол наклона, кроме того, обеспечение возможности сканирования керновой колонки с диаметром от 30 до 120 мм с автоматическим контролем диаметра.

Сущность заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» поясняется примером конкретного выполнения, схемами, где:

- на фиг. 1 изображено устройство со сканирующим блоком для осуществления способа определения угла наклона и направления падения трещин в керновом материале;

- на фиг. 2 изображены сканирующий и поворотный блоки для определения угла наклона и направления падения трещин в керновом материале;

- на фиг. 3 изображен керновый материал, подготовленный к сборке в керновую колонку;

- на фиг. 4 изображена керновая колонка, собранная из кернового материала по фиг. 3;

- на фиг. 5 изображен керновый материал (часть керновой колонки) с условной линией Z-Z вдоль его длины;

- на фиг. 6. изображен вид по стрелке «В» фиг. 5 с направлением трещины и азимута ее падения;

- на фиг. 7 изображен вид отсканированной стороны «А» керновой колонки;

- на фиг. 8 изображен вид отсканированной стороны «Б» керновой колонки;

- на фиг. 9 изображен вид отсканированных сторон «А» и «Б» и условной линии Z-Z вдоль всей длины керновой колонки в программном обеспечении в виде плоской развертки поверхности кернового материала.

Способ определения угла наклона и направления падения трещин в керновом материале осуществляли с помощью устройства, имеющего основание, выполненное в виде рамы 1, с направляющими 2? по которым перемещается сканирующий блок 3 вдоль направления секции кернового материала - керновой колонки 4. Длина керновой колонки 4 кратна метру. Керновая колонка 4 закреплена на неподвижно установленном лотке 5 для кернового материала, закрепленном на ложементах 6 рамы 1. Перемещение сканирующего блока 3 по направляющим 2 осуществляется с помощью сервопривода 7. На перемещающемся по направляющим 2 рамы 1 сканирующем блоке 3 в плоскости, перпендикулярной центральной оси С-С керновой колонки 4, закрепляется поворотный блок 8, перемещающийся по образующей окружности цилиндра керновой колонки 4, центр вращения которой совпадает с центральной осью С-С керновой колонки 4. Перемещение упомянутого поворотного блока 8 осуществляется сервоприводом 9. Поворотный блок 8 включает в себя следующие элементы: цифровую фотокамеру 10 со сменным объективом 11, осветительный блок дневного света и ультрафиолетового света 12 с длиной волны 400 нм, лазерный измеритель расстояния 13 (дальномер), защитный экран 14. Управление сервоприводами 7 и 9, блоками освещения 12, цифровой фотокамерой 10, лазерным измерителем расстояния 13 производится посредством персонального компьютера с соответствующим программным обеспечением (на схеме не показан).

Способ определения угла наклона и направления падения трещин в керновом материале осуществляется следующим образом.

Первоначально у образцов кернового материала, поступившего с месторождений в лабораторию, проводили оценку первичного состояния. Затем образцы кернового материала, прошедшие оценку первичного состояния, состыковывали с образованием керновой колонки 4 и маркером наносили условную линию Z-Z вдоль всей длины керновой колонки 4. После этого производили мойку кернового материала - керновой колонки 4 - проточной водой с применением щетки и губки. Промытый керновый материал в течение восьми часов сушили при комнатной температуре, а затем помещали керновую колонку 4 размером, кратным метру, на неподвижный лоток 5 для кернового материала устройства определения угла наклона и направления падения трещин в керновом материале. Далее с помощью персонального компьютера с соответствующим программным обеспечением устанавливали параметры съемки, как то: светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования. После этого последовательно производили сканирование (фотографирование) в автоматическом режиме всех участков равной длины «L=5 см», первой стороны «А» керновой колонки (условно сторону «А» по дуге керновой колонки от 0 до 180° +2-3°, т.е. сканировали по очереди участки длиной «L1+L2+…+L20=Lп» керновой колонки и длиной дуги «h1+h2+…+h12=Н», после того, как сканировали первый участок «L1» по всей длине дуги «Н» первой стороны «А» кернового материала, камеру продвигали вперед и вновь повторяли операцию сканирования на участке «L2», и так повторяли сканирование до конца участка «L20» метра. После того как завершали сканирование стороны «А», сканирующий блок 3 возвращали в исходную позицию. Полученные снимки автоматически, используя программное обеспечение, обрабатывали с учетом координат их съемки. Снимки сшивали в единое изображение (фиг. 3), при этом масштаб единого изображения соответствовал масштабу кернового материала (керновой колонки). Затем керновую колонку 4 накрывали вторым фиксирующим лотком 5 и производили разворот фиксирующих лотков с керновой колонкой 4 на 180° относительно условной стороны «А». После этого в настройках программного обеспечения выбирали съемку керновой колонки 4 на стороне «Б», которую установили на месте уже отсканированной стороны «А», и сканировали сторону «Б» аналогично процессу сканирования стороны «А». Таким образом, получали два снимка сторон «А» и «Б» керновой колонки 4, которые помещали в общую базу данных указанного исследуемого объекта - кернового материала. Снимки сторон «А» и «Б» сшивали в один снимок, являющийся плоской разверткой поверхности кернового материала (фиг. 4). В последующем, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» поверхности кернового материала (фиг. 4) отмечали выявленные трещины и далее, по координатам выявленных трещин, рассчитывали углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки. Развернутое изображение трещин представляло синусоиды (в случае горизонтальных трещин). Для вертикальных трещин определяли только угол наклона, т.е. отношение высоты амплитуды к диаметру керновой колонки.

где < - угол наклона;

А - высота амплитуды;

d - диаметр керновой колонки.

Для определения направления падения трещины на схеме кернового материала фиг. 2 за ноль принимали изображение условной линии Z-Z вдоль всей длины керновой колонки 4, при котором направлением падения являлся градус от условной линии до минимальной точки трещины по часовой стрелке, согласно Фиг. 2, при этом в программном обеспечении указывали: генетический тип и подтип трещин; генетическую разновидность трещин; морфологические и генетические свойства трещин. Для стилолитовых швов указывали: тип стилолитов (по форме); амплитуду (высоту выступов в см); ориентировку к напластованию; соотношение стилолитов в слое (стилолитовая сеть); соотношения стилолитов и трещин; состав вещества заполнителя.

Применение предлагаемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» позволяет точно определить угол наклона и падения трещин на керновом материале посредством получения цифрового изображения развертки поверхности керна при сохранении простоты конструкции, повысить эксплуатационные и технические качества, а также повысить эффективность работы устройства, реализующего способ.


СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА НАКЛОНА И НАПРАВЛЕНИЯ ПАДЕНИЯ ТРЕЩИН В КЕРНОВОМ МАТЕРИАЛЕ
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
13.01.2017
№217.015.8877

Торфощелочной буровой раствор для вскрытия продуктивных пластов

Изобретение относится к нефтегазодобывающей промышленности, в частности для вскрытия пластов-коллекторов, содержащих нефть, газ или конденсат. Технический результат - повышение эффективности вскрытия продуктивных пластов в процессе бурения нефтяных и газовых скважин, сохранение...
Тип: Изобретение
Номер охранного документа: 0002602280
Дата охранного документа: 20.11.2016
Показаны записи 1-3 из 3.
13.01.2017
№217.015.8877

Торфощелочной буровой раствор для вскрытия продуктивных пластов

Изобретение относится к нефтегазодобывающей промышленности, в частности для вскрытия пластов-коллекторов, содержащих нефть, газ или конденсат. Технический результат - повышение эффективности вскрытия продуктивных пластов в процессе бурения нефтяных и газовых скважин, сохранение...
Тип: Изобретение
Номер охранного документа: 0002602280
Дата охранного документа: 20.11.2016
19.07.2019
№219.017.b608

Лабораторная установка изучения свойств кернов

Изобретение относится к лабораторной установке - индивидуальному капилляриметру в пластовых условиях для индивидуального изучения капиллярных свойств 18 образцов керна в пластовых условиях. Техническим результатом является повышение производительности установки и возможность работать с...
Тип: Изобретение
Номер охранного документа: 0002694869
Дата охранного документа: 17.07.2019
23.02.2020
№220.018.04b8

Уголковый отражатель для геотехнического мониторинга

Уголковый отражатель для геотехнического мониторинга. Изобретение относится к локационной технике и может быть использовано при мониторинге потенциально опасных участков в районах прохождения трасс магистральных газопроводов. Уголковый отражатель для геотехнического мониторинга выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002714854
Дата охранного документа: 19.02.2020
+ добавить свой РИД