×
13.01.2017
217.015.7f10

СПОСОБ СОЗДАНИЯ ГИБКОГО ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для создания гибкого термоэлектрического модуля. Сущность изобретения заключается в том, что способ создания гибкого термоэлектрического модуля включает получение полиимидной пленки и напыление на нее в вакуумной камере посредством лазера функциональных слоев, полиимидную пленку получают на металлическом основании с полированной поверхностью, которое устанавливают на горизонтальную центрифугу, осуществляют его вращение и одновременно подают посредством дозатора на его рабочую поверхность раствор полиамидоимида в течение 30-120 с с получением заданной толщины пленки, основание с нанесенной пленкой полиамидоимида размещают в вакуумной камере с нагревателями и мишенями из материалов для создания буферного, полупроводниковых и коммутирующих слоев и осуществляют сушку пленки, затем осуществляют лазерное напыление функциональных слоев в несколько этапов: а) в камеру подают кислород и при одновременном вращении мишени и основания с нанесенной пленкой осуществляют лазерную абляцию мишени из титана с формированием на полиимидном слое буферного слоя оксида титана; б) камеру откачивают на высокий вакуум, включают нагреватель на 150-170°C в зависимости от толщины наносимого слоя, включают вращение мишени и вращение подложки, устанавливают маску для слоя ветвей n-типа и производят лазерную абляцию материала мишени n-типа с формированием ветвей n-типа на поверхности полиимида; в) устанавливают маску для слоя ветвей р-типа, подают в зону лазерного воздействия мишень р-типа проводимости, производят лазерную абляцию материала мишени р-типа с формированием ветвей р-типа на поверхности полиимида; г) устанавливают маску для коммутирующего слоя, подают в зону лазерного воздействия мишень для создания слоя металлизации, производят лазерную абляцию материала мишени, и создают слой металлизации, коммутирующий электрически последовательно между собой полупроводниковые ветви, и создают контактные площадки на концах термоэлектрического модуля, после создания функциональных слоев камеру развакуумируют, извлекают из основания, которое затем для отделения полученного модуля выдерживают в ультразвуковой ванне мощностью 25-50 Вт в течение 5 мин в деионизованной дистиллированной воде, термоэлектрический модуль снимают с основания и высушивают. Технический результат: обеспечение возможности повышения качества изделия. 9 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к электротехнике и нанотехнологиям и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях.

Известны способы создания термоэлектрических модулей на гибкой подложке (см., например, Гольцман, Дашевский "Пленочные термоэлементы: Физика и применение", изд. "Наука", 1983, с. 81-90), с получением слоев термоэлектрика на готовых полиимидных пленках в вакуумной камере путем напыления, методом дискретного испарения и лазерного напыления с использованием неодимового лазера и нагревателя пленок.

Недостатком данного способа является технологическая сложность обеспечения плоскостности расположения, закрепления и равномерности теплового контакта по поверхности готовой полиимидной пленки, приводящая к неоднородности электрофизических свойств конечного устройства.

Недостатком способа является низкое качество поверхности пленок из-за использования высокомощного неодимового лазера, приводящего к образованию капельной фазы из-за объемного механизма абляции материала мишени.

Задачей данного изобретения является создание более дешевого способа с получением термоэлектрического гибкого модуля высокого качества.

Способ создания гибкого термоэлектрического модуля включает получение полиимидной пленки и напыление на нее в вакуумной камере посредством лазера функциональных слоев, при этом полиимидную пленку получают на металлическом основании с полированной поверхностью, которое устанавливают на горизонтальную центрифугу, осуществляют его вращение и одновременно подают посредством дозатора на его рабочую поверхность раствор полиамидоимида в течение 30-120 с с получением заданной толщины пленки, основание с нанесенной пленкой полиамидоимида размещают в вакуумной камере с нагревателями и мишенями из материалов для создания буферного, полупроводниковых и коммутирующих слоев и осуществляют сушку пленки, затем осуществляют лазерное напыление функциональных слоев в несколько этапов:

а) в камеру подают кислород и при одновременном вращении мишени и основания с нанесенной пленкой осуществляют лазерную абляцию мишени из титана с формированием на полиимидном слое буферного слоя оксида титана;

б) камеру откачивают на высокий вакуум, включают нагреватель на 150-170°С в зависимости от толщины наносимого слоя, включают вращение мишени и вращение подложки, устанавливают маску для слоя ветвей n-типа и производят лазерную абляцию материала мишени n-типа с формированием ветвей n-типа на поверхности полиимида;

в) устанавливают маску для слоя ветвей р-типа, подают в зону лазерного воздействия мишень р-типа проводимости, производят лазерную абляцию материала мишени р-типа с формированием ветвей р-типа на поверхности полиимида;

г) устанавливают маску для коммутирующего слоя, подают в зону лазерного воздействия мишень для создания слоя металлизации, производят лазерную абляцию материала мишени, и создают слой металлизации, коммутирующий электрически последовательно между собой полупроводниковые ветви, и создают контактные площадки на концах термоэлектрического модуля,

после создания функциональных слоев камеру развакуумируют, извлекают из основания, которое затем для отделения полученного модуля выдерживают в ультразвуковой ванне мощностью 25-50 Вт в течение 5 мин в деионизованной дистиллированной воде, термоэлектрический модуль снимают с основания и высушивают.

На фиг. 1 представлена схема гибкого термоэлектрического модуля, на фиг. 2 - схема нанесения полиамидоимида на основание, на фиг. 3 - схема нанесения функциональных слоев.

Технологии создания гибкого термоэлектрического модуля содержит следующие этапы:

Этап 0. Подготовительный

В вакуумную камеру 1 устанавливаются все необходимые мишени 2 материалов для создания полупроводниковых, буферных, адгезионных и коммутирующих слоев термоэлектрического модуля.

Выбор термоэлектрического материала основан на значении рабочего температурного диапазона изделия по критерию его максимальной термоэлектрической эффективности, при этом в температурном диапазоне от -20 до 120°С наиболее эффективны твердые растворы на основе теллурида висмута, а в более высокотемпературном диапазоне от 0 до 400°С рационально использовать материал на основе теллурида свинца.

Этап 1. Синтез полиимидного слоя

Основание 3 с полированной металлической поверхностью с шероховатостью не хуже Ra=1.2 мкм устанавливается в горизонтальную центрифугу 4. Включается центрифуга и скорость вращения центрифуги составляет 4000 об/мин. На поверхность вращающегося основания подается с помощью дозатора 5 11%-ный раствор полиамидоимида 16 в течение 30-120 с в зависимости от требований по однородности и толщине конечного слоя полиимида. Для приготовления раствора полиамидоимида 16 заранее концентрат полиамидоимида растворяется в амидном растворителе (n-метилпирролидон) до необходимой концентрации.

Далее основание 3 с нанесенным слоем полиамидоимида устанавливается в вакуумную камеру 1 технологического оборудования для импульсного лазерного осаждения для процесса термической имидизации, где основание сушится в течение 5 мин при 125°С, нагреваемое с помощью нагревателя 6 в вакуумной камере 1. На основании 3 формируется равномерный полиимидый слой 7 толщиной 0,6-5,5 мкм.

Этап 2. Нанесение буферного слоя 9

Осуществляется поворот карусели 8 мишеней 2 с подачей мишени титана в зону лазерного воздействия лазерным лучом 15. Включается вращение мишени (20 об/мин) и вращение подложки (30 об/мин). Производится лазерная абляция материала мишени с формированием буферного слоя 9 оксида титана на поверхности полиимида. В вакуумной камере поддерживается давление 0.1 Торр кислорода. В качестве лазерного источника используют KrF-эксимерный лазер с длиной волны излучения 248 нм, длительностью импульса 30 нс, плотностью энергии на поверхностях мишеней 0,7-1,5 Дж/см2. Малые длина волны и длительность импульса используются с целью получения правильного химического состава испаряемых материалов. В вакуумной камере выдерживается давление кислорода 10-10-1 Торр. В результате взаимодействия плазмы титана с кислородом на полиимидном слое 7 формируется буферный слой 9 оксида титана (II), повышающий адгезионные свойства. Данный этап необходим при особых требованиях по долговечности и вибростойкости термоэлектрического модуля, например в военной или аэрокосимческой отрасли.

Этап 3. Создание полупроводниковых ветвей

Вакуумная камера 3 откачивается на высокий вакуум (не хуже 10-5 Торр), а нагреватель 6 устанавливается на 150-170°С в зависимости от толщины будущего слоя. Включается вращение мишени (20 об/мин) и вращение подложки (30 об/мин). Устройством автоматической смены масок устанавливается маска 10 для слоя ветвей n-типа 11.

Производится лазерная абляция материала мишени n-типа с формированием ветвей n-типа 11 на поверхности полиимида. По окончании процесса создания ветвей n-типа 11 устройством автоматической смены масок устанавливается маска 10 для слоя ветвей р-типа 12 и осуществляется поворот карусели 8 мишеней с подачей мишени р-типа проводимости в зону лазерного воздействия. Производится лазерная абляция материала мишени р-типа с формированием ветвей р-типа 12 на поверхности полиимида.

Этап 4. Создание коммутирующего слоя 13

Вакуумная камера 1 откачивается на высокий вакуум (не хуже 10-5 Торр), а нагреватель 6 устанавливается на 150-170°С в зависимости от толщины будущего слоя. Устройством автоматической смены масок устанавливается маска 6 для коммутирующего слоя 13 и осуществляется поворот карусели 8 мишеней с подачей мишени для создания металлизации в зону лазерного воздействия. Производится лазерная абляция материала мишени, при этом создается слой металлизации, коммутирующий между собой полупроводниковые ветви электрически последовательно, а также создаются контактные площадки 14 на концах термоэлектрического модуля.

Этап 5. Снятие термоэлектрического модуля с основания 3

По окончании процессов создания функциональных слоев термоэлектрического модуля вакуумный реактор развакуумируется и основание извлекается. Основание выдерживается в узльтразвуковой ванне мощностью 25-50 Вт в течение 5 мин в деионизованной дистиллированной воде, затем термоэлектрический модуль на полиимидном основании снимается с основания механическим способом. Модуль далее высушивается в сушильной камере при температуре 80°С и пониженной влажности в течение 30 мин.

Технический результат заключается в следующем:

- снижении стоимости производства благодаря объединению этапов синтеза полиимида, формировании полупроводниковых, буферных и коммутирующих слоев в едином технологическом оборудовании;

- повышении качества изделия, снижении процента брака за счет использования коротковолнового излучения, приводящего к снижению капельной фазы на поверхности полупроводника;

- повышении качества изделия за счет высокой равномерности распределения тепловых полей при нагреве полиимидного слоя и высокой плоскостности, приводящей к формированию более однородных функциональных слоев, благодаря синтезу полиимидного слоя на ровном полированном металлическом основании ввиду отсутствия необходимости использования клеевого слоя, воздушных зазоров и т.п.


СПОСОБ СОЗДАНИЯ ГИБКОГО ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ
СПОСОБ СОЗДАНИЯ ГИБКОГО ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ
СПОСОБ СОЗДАНИЯ ГИБКОГО ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 15.
20.04.2013
№216.012.3728

Способ импульсного электрогазодинамического формирования идентификационных меток на поверхности твердого материала

Изобретение может быть использовано при формировании идентификационных меток на поверхности твердых материалов, как металлических, так и диэлектрических. С помощью создаваемой в сверхзвуковом сопле газовой струи в поверхность внедряют частицы, полученные испарением материала. Внутри основной...
Тип: Изобретение
Номер охранного документа: 0002479673
Дата охранного документа: 20.04.2013
10.05.2013
№216.012.3ecc

Способ идентификации материальных ресурсов

Изобретение относится к технике идентификации электропроводящих деталей, например деталей транспортных средств. Поверхность индивидуальной матрицы стохастично (неповторимо) формируют лазерным непрерывным излучением. При этом на нее наносят несплошной монослой порошка разного размера, а...
Тип: Изобретение
Номер охранного документа: 0002481643
Дата охранного документа: 10.05.2013
27.07.2013
№216.012.5ac8

Способ изменения диаметра перетяжки выходного лазерного пучка на фиксированном расстоянии от лазера

Изобретение относится к лазерной технике. Способ изменения диаметра перетяжки выходного лазерного пучка на фиксированном расстоянии от лазера реализуется устройством, включающим лазер, излучающий пучок с диаметром перетяжки 2h и параметром конфокальности z, двухкомпонентную оптическую систему,...
Тип: Изобретение
Номер охранного документа: 0002488861
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.6714

Способ многолучевой лазерной сварки

Изобретение относится к способу многолучевой лазерной сварки конструкционных сталей и может найти применение в различных отраслях машиностроения. Осуществляют подачу на поверхность свариваемого изделия двух лазерных лучей под углом друг к другу в стык свариваемого соединения и создание одной...
Тип: Изобретение
Номер охранного документа: 0002492035
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.949e

Способ получения композиционных покрытий методом коаксиальной лазерной оплавки

Изобретение относится к области получения на деталях наплавкой износостойких покрытий из порошковых материалов и может найти применение для изделий судостроения, авиационной промышленности, теплоэнергетического машиностроения, нефтегазодобывающей, металлургической и химической промышленности....
Тип: Изобретение
Номер охранного документа: 0002503740
Дата охранного документа: 10.01.2014
20.05.2014
№216.012.c6b9

Способ получения алмазоподобных покрытий комбинированным лазерным воздействием

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям. Алмазоподобные покрытия получают в вакууме путем...
Тип: Изобретение
Номер охранного документа: 0002516632
Дата охранного документа: 20.05.2014
27.01.2015
№216.013.21a6

Способ нанесения маркировки внутри изделия

Способ относится к области получения скрытых изображений без нарушения целостности поверхности на некоторой глубине в стеклянных материалах. Данный способ включает в себя этап подготовки изображения для заданного типоразмера продукта. Путем автоматизированного комплекса программ формируется...
Тип: Изобретение
Номер охранного документа: 0002540062
Дата охранного документа: 27.01.2015
10.04.2015
№216.013.3820

Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионно-стойкой криогенной аустенитной высокопрочной свариваемой стали, предназначенной для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь...
Тип: Изобретение
Номер охранного документа: 0002545856
Дата охранного документа: 10.04.2015
10.09.2015
№216.013.790b

Способ получения износостойкого покрытия на детали

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение при восстановлении изношенных и упрочнении новых деталей в различных отраслях машиностроения. Способ включает наплавку на обрабатываемую поверхность лазерным лучом порошкового материала в среде...
Тип: Изобретение
Номер охранного документа: 0002562576
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7913

Способ формирования дискретного износостойкого покрытия на детали

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение при восстановлении изношенных и упрочнении новых деталей в различных отраслях машиностроения. Техническим результатом изобретения является предлагаемый способ формирования дискретного...
Тип: Изобретение
Номер охранного документа: 0002562584
Дата охранного документа: 10.09.2015
Показаны записи 1-10 из 16.
20.04.2013
№216.012.3728

Способ импульсного электрогазодинамического формирования идентификационных меток на поверхности твердого материала

Изобретение может быть использовано при формировании идентификационных меток на поверхности твердых материалов, как металлических, так и диэлектрических. С помощью создаваемой в сверхзвуковом сопле газовой струи в поверхность внедряют частицы, полученные испарением материала. Внутри основной...
Тип: Изобретение
Номер охранного документа: 0002479673
Дата охранного документа: 20.04.2013
10.05.2013
№216.012.3ecc

Способ идентификации материальных ресурсов

Изобретение относится к технике идентификации электропроводящих деталей, например деталей транспортных средств. Поверхность индивидуальной матрицы стохастично (неповторимо) формируют лазерным непрерывным излучением. При этом на нее наносят несплошной монослой порошка разного размера, а...
Тип: Изобретение
Номер охранного документа: 0002481643
Дата охранного документа: 10.05.2013
27.07.2013
№216.012.5ac8

Способ изменения диаметра перетяжки выходного лазерного пучка на фиксированном расстоянии от лазера

Изобретение относится к лазерной технике. Способ изменения диаметра перетяжки выходного лазерного пучка на фиксированном расстоянии от лазера реализуется устройством, включающим лазер, излучающий пучок с диаметром перетяжки 2h и параметром конфокальности z, двухкомпонентную оптическую систему,...
Тип: Изобретение
Номер охранного документа: 0002488861
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.6714

Способ многолучевой лазерной сварки

Изобретение относится к способу многолучевой лазерной сварки конструкционных сталей и может найти применение в различных отраслях машиностроения. Осуществляют подачу на поверхность свариваемого изделия двух лазерных лучей под углом друг к другу в стык свариваемого соединения и создание одной...
Тип: Изобретение
Номер охранного документа: 0002492035
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.949e

Способ получения композиционных покрытий методом коаксиальной лазерной оплавки

Изобретение относится к области получения на деталях наплавкой износостойких покрытий из порошковых материалов и может найти применение для изделий судостроения, авиационной промышленности, теплоэнергетического машиностроения, нефтегазодобывающей, металлургической и химической промышленности....
Тип: Изобретение
Номер охранного документа: 0002503740
Дата охранного документа: 10.01.2014
20.05.2014
№216.012.c6b9

Способ получения алмазоподобных покрытий комбинированным лазерным воздействием

Изобретение относится к технологиям повышения износостойких, прочностных и антифрикционных свойств металлорежущего инструмента, внешних поверхностей обшивки авиационных и космических летательных аппаратов, оптических приборов и нанотехнологиям. Алмазоподобные покрытия получают в вакууме путем...
Тип: Изобретение
Номер охранного документа: 0002516632
Дата охранного документа: 20.05.2014
27.01.2015
№216.013.21a6

Способ нанесения маркировки внутри изделия

Способ относится к области получения скрытых изображений без нарушения целостности поверхности на некоторой глубине в стеклянных материалах. Данный способ включает в себя этап подготовки изображения для заданного типоразмера продукта. Путем автоматизированного комплекса программ формируется...
Тип: Изобретение
Номер охранного документа: 0002540062
Дата охранного документа: 27.01.2015
10.04.2015
№216.013.3820

Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионно-стойкой криогенной аустенитной высокопрочной свариваемой стали, предназначенной для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь...
Тип: Изобретение
Номер охранного документа: 0002545856
Дата охранного документа: 10.04.2015
10.09.2015
№216.013.790b

Способ получения износостойкого покрытия на детали

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение при восстановлении изношенных и упрочнении новых деталей в различных отраслях машиностроения. Способ включает наплавку на обрабатываемую поверхность лазерным лучом порошкового материала в среде...
Тип: Изобретение
Номер охранного документа: 0002562576
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7913

Способ формирования дискретного износостойкого покрытия на детали

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение при восстановлении изношенных и упрочнении новых деталей в различных отраслях машиностроения. Техническим результатом изобретения является предлагаемый способ формирования дискретного...
Тип: Изобретение
Номер охранного документа: 0002562584
Дата охранного документа: 10.09.2015
+ добавить свой РИД