×
13.01.2017
217.015.7e98

Результат интеллектуальной деятельности: СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002601233
Дата охранного документа
27.10.2016
Аннотация: Изобретение относится к технике сверхвысоких частот и может быть использовано при проектировании фазированных антенных решеток, в частности, направленных ответвителей (НО). Реализуют емкостную связь путем включения в определенных местах дополнительных емкостей между связанными микрополосковыми линиями передачи, которые располагаются на заземленной диэлектрической подложке. Вычисляют оптимальные характеристики НО с емкостями с помощью матриц рассеяния при варьировании геометрии микрополосковых линий - введен следующий порядок действий: на первом этапе производят схемотехническое моделирование, где вначале задают в программном пакете значения частотного диапазона и параметры диэлектрической подложки (диэлектрическую проницаемость, толщину подложки без учета потерь как в подложке, так и в проводниках), затем выбирают конфигурацию НО, включающую в себя связанные микрополосковые линии с емкостными элементами, задают значения ширины, длины, расстояния между линиями, количество емкостных элементов (микрополосковых шлейфов и емкостных элементов связи) и их параметры, задают выходные данные устройства: минимальный (близкий к единице) коэффициент стоячей волны (КСВ), переходное ослабление, развязку, проводят параметрическую оптимизацию. По итогам схемотехнического моделирования получают топологическую модель НО с емкостными элементами в виде микрополосковых шлейфов и емкостных элементов связи, затем на втором этапе, используя результаты схемотехнического моделирования, осуществляют электродинамическое моделирование, где путем небольших эмпирических вариаций геометрических параметров получают окончательный вариант топологии микрополоскового НО. Технический результат заключается в повышении направленности направленного ответвителя в широком диапазоне его переходных ослаблений при улучшении технологичности изготовления. 8 ил.

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано при проектировании фазированных антенных решеток (ФАР), в частности микрополосковых делителей мощности, и при создании приемопередающих модулей активных ФАР.

Применение микрополосковых направленных ответвителей (НО) в ФАР обусловлено их функциональным назначением: в одних случаях в качестве элементов деления мощности, в других для определения уровня мощностей как поступающих на излучатели решетки, так и отраженных от них. В последнем случае они известны как направленные детекторы.

Требуемый диапазон переходных ослаблений микрополосковых НО для означенных выше применений достаточно широк и лежит в пределах 8-35 дБ при минимальной направленности не менее 20 дБ и рабочей полосе частот порядка 50%; помимо этого к НО предъявляются требования как по уровню проходящей через них мощности, так и по относительно малым габаритным размерам.

Этим требованиям удовлетворяют микрополосковые НО на связанных линиях передачи. Как правило, они изготавливаются на основе кусочно-однородной в поперечном сечении диэлектрической среды, которая, как известно, производит «расщепление» собственных волн структуры из связанных линий на волны с различными фазовыми скоростями. А интересующая нас направленность как раз зависит от разности фазовых скоростей этих волн в системе связанных полосковых линий. Здесь следует иметь в виду, что связь между линиями передачи осуществляется как электрической, так и магнитной компонентами поля, причем для регулярных связанных линий погонные параметры - коэффициенты связи по той и другой компонентам поля - не совпадают друг с другом.

Для выравнивания фазовых скоростей прибегают к различным схемотехническим приемам (описанным, например, в [1, 2]), которые могут служить аналогами предлагаемого изобретения. Так, в [1] рассмотрены индуктивно-емкостные компенсирующие элементы, периодически расположенные вдоль четвертьволновых секций из двух связанных микрополосковых линий, обеспечивающие выравнивание скоростей четной и нечетной волн, использованные для создания НО с переходным ослаблением 10-20 дБ в рабочей полосе не менее октавы с направленностью 15-25 дБ для частот от 0.2 до 18 ГГц. Каждая из связанных линий (при слабой связи) представляет собой каскадное соединение коротких отрезков широких и узких полосковых проводников, что ограничивает предельную пропускную мощность. В работе [2] для выравнивания фазовых скоростей предлагается накрывать область связи микрополоскового НО дополнительным листом диэлектрика. Однако этот способ не технологичен, так как крепление листа приводит либо к усложнению конструкции НО, либо к недоступности коррекции его рабочих характеристик в случае их ухудшения.

Известен еще один способ повышения направленности НО [3], который заключается в увеличении емкостной связи, путем включения в определенных местах дополнительных емкостей между связанными микрополосковыми линиями передачи, которые располагаются на заземленной диэлектрической подложке, в вычислении оптимальных характеристик НО с емкостями с помощью матриц рассеяния и оптимизации геометрии микрополосковых линий.

Именно этот способ выбирается в качестве прототипа. На фиг. 1 показаны возможные варианты расположения емкостных элементов (конденсаторов С): на фиг. 1а - навесных конденсаторов, а на фиг. 1б - встречно-штыревых конденсаторов. Оба варианта практически реализуемы при достаточно умеренных величинах переходного ослабления (не более 10-15 дБ при использовании подложек из поликора), когда расстояние между связанными полосковыми проводниками НО не превышает длины конденсатора, причем из двух представленных вариантов предпочтение следует отдать второму варианту, как отличающемуся большей надежностью при массовом изготовлении.

К существенным недостаткам прототипа можно отнести: невозможность конструктивной реализации НО с переходным ослаблением более 25-40 дБ из-за больших расстояний между связанными линиями, отсутствие методики построения НО для случая слабосвязанных линий разной ширины (при прохождении по основному каналу НО - широкой линии - мощности повышенного уровня) и искажение характеристик НО из-за влияния на них контактных площадок под конденсаторы.

Достигаемым техническим результатом предлагаемого изобретения является повышение направленности направленного ответвителя в широком диапазоне его переходных ослаблений при улучшении технологичности изготовления.

Разработка способа повышения направленности ответвителей на двух связанных микрополосковых линиях основана на изменении структуры НО, а именно в области связи к микрополосковым линиям, располагаемым на заземленной с обратной стороны подложке, подключаются емкостные элементы таким образом, чтобы НО представлял собой согласованный с трактом восьмиполюсник.

Указанный технический результат достигается тем, что в известном способе построения НО, где реализуют емкостную связь путем включения в определенных местах дополнительных емкостей между связанными микрополосковыми линиями передачи, которые располагаются на заземленной диэлектрической подложке, вычисляют оптимальные характеристики НО с емкостями с помощью матриц рассеяния при варьировании геометрии микрополосковых линий, - введен следующий порядок действий: на первом этапе производят схемотехническое моделирование, где вначале задают в программном пакете значения частотного диапазона и параметры диэлектрической подложки (диэлектрическую проницаемость, толщину подложки без учета потерь как в подложке так и в проводниках), затем выбирают конфигурацию НО, включающую в себя связанные микрополосковые линии с емкостными элементами, задают значения ширины, длины, расстояния между линиями, количество емкостных элементов (микрополосковых шлейфов и емкостных элементов связи) и их параметры, задают выходные данные устройства: минимальный (близкий к единице) коэффициент стоячей волны (КСВ), переходное ослабление, развязку, проводят параметрическую оптимизацию, по итогам схемотехнического моделирования получают топологическую модель НО с емкостными элементами в виде микрополосковых шлейфов и емкостных элементов связи, затем, на втором этапе, используя результаты схемотехнического моделирования, осуществляют электродинамическое моделирование, где путем небольших эмпирических вариаций геометрических параметров получают окончательный вариант топологии микрополоскового НО.

Направленность вытекает из теоремы о том, что «взаимный восьмиполюсник без потерь, полностью внутренне согласованный, является идеальным направленным ответвителем» [4]. Конфигурации емкостных элементов при схемотехническом моделировании включают в себя четыре основных вида: емкость на землю (фиг. 2а), емкость связи (фиг. 2б), короткий шлейф (фиг. 2в), емкостной элемент связи (фиг. 2г); возможны также их комбинации. При электродинамическом моделировании конфигурации могут быть самыми разнообразными и зависят главным образом от параметров микрополосковых шлейфов (фиг. 2з) и емкостных элементов связи (фиг. 2д, е, ж). Электродинамическая модель емкостного элемента связи в общем случае состоит двух коротких микрополосковых отрезков с уширениями на концах, разделенных малым зазором (образующим емкость связи) и включенных между связанными линиями НО (фиг. 2д, е, ж). Нулевая емкость связи означает, что к связанной линии подключен согласующий короткий шлейф (фиг. 2з).

Сущность изобретения

В программном пакете схемотехнического и электродинамического моделирования Microwave Office [5] исходя из выбранного частотного диапазона, требуемого переходного ослабления и развязки, вначале строят схемотехническую, а затем топологическую модель, на основе которой решают задачу на наилучшее согласование НО (восьмиполюсника) с трактом. При построении модели, по существу, решают задачу структурного синтеза, когда определяют вид схемы и топологию, включающие в себя число и конфигурацию емкостных элементов.

Например (см. фиг. 2и), задают в программном пакете значение частотного диапазона (лежащего внутри полосы частот 1-2 ГГц) и параметры подложки: относительную диэлектрическую проницаемость, толщину подложки. Потери не учитывают. Затем выбирают конфигурацию НО, где задают значения ширины, длины, расстояния между линиями и количество емкостных элементов. Здесь, принимают во внимание унитарность матрицы рассеяния S, из которой для согласованного с трактом восьмиполюсника вытекает равенство S24=S13, где S24, S13 - элементы матрицы рассеяния, а 1, 2, 3, 4 - номера портов НО. Данное равенство полезно при выборе числа шлейфов в основном и вторичном каналах НО. Затем задают цель оптимизации - данные выходных параметров устройства: КСВ менее 1,03, переходное ослабление 30 дБ, развязку более 60 дБ. Далее программой проводится параметрическая оптимизация, параметрами которой выступают значения емкостей, геометрические размеры микрополосковых линий и расстояние между линиями. Первоначальное расстояние между связанными линиями выбирают из условия равенства переходного ослабления исходного НО на связанных линиях заданному значению. В итоге емкостной элемент связи с емкостью связи С1, включенный между линиями НО и изображенный на фиг. 2г, реализуется в виде короткого микрополоскового отрезка с уширением па конце и близко расположенного участка связанной линии НО, а емкости на землю С2 реализуются в виде двух коротких шлейфов (фиг. 2к).

Используя результаты схемотехнического моделирования, осуществляем переход к электродинамической модели, в которой путем вариаций геометрических параметров подбирают окончательный вариант топологии микрополоскового НО с большим (в 30 дБ) переходным ослаблением, которая приведена на фигуре 3а. Длину короткого микрополоскового отрезка с уширением определяют исходя из расстояния между связанными линиями, а его ширину, равно как и ширину узкой линии НО, находят эмпирическим путем, отталкиваясь от условия наилучшего согласования вторичного канала НО с трактом. Параметры основного канала НО - ширину микрополосковых линий и параметры коротких шлейфов - вычисляют исходя из требований к согласованию канала, переходному ослаблению и развязке. На фигуре 3б приведены результаты программных расчетов, выполненные для подложки из поликора с относительной диэлектрической проницаемостью ε=9,8, толщиной 1 мм.

На фиг. 4а (электродинамическая модель) представлен пример топологии микрополоскового НО с умеренным переходным ослаблением 8,5 дБ, выполненной на связанных линиях одинаковой ширины. Здесь в отличие от прототипа в местах подключения емкости связи присутствуют также паразитные емкости на землю, обозначенные на фиг. 4б (являющейся схемотехнической моделью НО) через С1. Из-за них сформулированные выше требования к характеристикам НО в части согласования с трактом приводят к некоторому уменьшению ширин связанных линий в топологии НО. Необходимо заметить, что требования равенства коэффициентов передачи основного и дополнительного каналов здесь отсутствуют в силу симметрии конструкции. Результаты программных расчетов для НО с переходным ослаблением 8,5 дБ на подложке из поликора с относительной диэлектрической проницаемостью ε=9,8, толщиной 1 мм показаны на фиг. 4в.

На фиг. 5а представлен упрощенный вариант топологии НО с переходным ослаблением 30 дБ. Здесь в качестве емкостного элемента используется отрезок широкой микрополосковой линии с близко расположенным к связанной линии основного канала торцом. В основном канале поперечные шлейфы вообще отсутствуют, а близкая к нулю разность фаз между коэффициентами передачи в каналах обеспечивается замедлением волны в основном канале, где связанная полосковая линия значительно шире. На фиг. 5б приведены расчетные (программные) и экспериментальные характеристики такого НО, изготовленного на подложке из материала Rodgers с относительной диэлектрической проницаемостью ε=10,2, толщиной 1,27 мм. Экспериментальные характеристики обозначены штрихпунктирной линией.

Также с помощью заявляемого способа можно получать различные варианты топологий микрополосковых НО в зависимости от поставленных задач. Так, при решении задачи по повышению уровня пропускаемой по основному каналу НО мощности, топология устройства примет вид, представленный на фиг. 6, где конфигурация открытого конца шлейфа в виде Т-образного уширения, заменена участком металлизации в виде круга.

Реализация устройства с двумя вторичными каналами представлена на фиг. 7.

На фиг. 8 изображена топология НО с увеличенной шириной рабочей полосы.

Таким образом, предложен способ построения микрополосковых направленных ответвителей на связанных микрополосковых линиях, позволяющий создавать широкую номенклатуру НО с повышенной направленностью в широком диапазоне его переходных ослаблений при улучшенной технологичности изготовления для различных применений в интегральных СВЧ устройствах и, в частности, в малогабаритных модулях ФАР.

Список использованной литературы

1. Стародубровский Р.К. Компенсирующие структуры связанных линий для широкополосных и сверхширокополосных микрополосковых направленных ответвителей. Антенны, вып. 7, 2004, стр. 40-45.

2. Микроэлектронные устройства СВЧ / Под ред. проф. Г.И. Веселова, М.: «Высшая школа», 1988, 280 с.

3. Темнов В.М., Суворов В.Н. Увеличение направленности микрополосковых ответвителей. Вопросы радиоэлектроники, сер. РИТ, 1973, вып. 5, стр. 115-120.

4. Будурис Ж., Шеневье П. Цепи сверхвысоких частот. (Теория и применение): Пер. с франц. / Под ред. проф. А.Л. Зиновьева, М.: «Советское радио», 1979, 288 с.

5. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ устройств с помощью Microwave Office / Под ред. В.Д. Разевига, М.: СОЛОН-Пресс, 2003, 496 с.

Способ построения микрополосковых направленных ответвителей (НО), заключающийся в реализации емкостной связи, за счет включения в определенных местах дополнительных емкостей связи между связанными микрополосковыми линиями передачи, которые располагаются на заземленной диэлектрической подложке, в вычислении оптимальных характеристик НО с емкостями связи с помощью матриц рассеяния при варьировании геометрии микрополосковых линий, отличающийся тем, что на первом этапе производят схемотехническое моделирование, где вначале задают в программном пакете значения частотного диапазона и параметры диэлектрической подложки (диэлектрическую проницаемость, толщину подложки без учета потерь как в подложке так и в проводниках), затем выбирают конфигурацию НО, включающую в себя связанные микрополосковые линии с емкостными элементами, задают значения ширины, длины, расстояния между линиями, количество емкостных элементов и их параметры, задают выходные данные устройства: минимальный (близкий к единице) коэффициент стоячей волны, переходное ослабление, развязку, проводят параметрическую оптимизацию, по итогам схемотехнического моделирования получают предварительную топологическую модель НО с емкостными элементами в виде микрополосковых шлейфов и емкостных элементов связи, на втором этапе осуществляют электродинамическое моделирование, где путем небольших эмпирических вариаций геометрических параметров получают окончательный вариант топологии микрополоскового НО.
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
СПОСОБ ПОСТРОЕНИЯ МИКРОПОЛОСКОВЫХ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 43.
20.01.2018
№218.016.16c2

Способ формирования и обработки радиолокационных модифицированных фазоманипулированных сигналов

Изобретение относится к области радиолокации и предназначено для формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов в радиолокационных станциях. Техническим результатом является формирование модифицированного ФМ-сигнала, имеющего минимальные...
Тип: Изобретение
Номер охранного документа: 0002635875
Дата охранного документа: 16.11.2017
17.02.2018
№218.016.2bbb

Способ улучшения характеристик нелинейного радиолокатора

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ). Техническим результатом предлагаемого изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002643199
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.31ac

Способ сетевой обработки информации в автоматизированной системе обработки и обмена радиолокационной информацией

Изобретение относится к радиолокации и может быть использовано в автоматизированных системах управления, построенных на принципах сетевой информационной структуры, в части, касающейся передачи и обмена радиолокационной информацией (РЛИ), в автоматизированной системе обработки и обмена...
Тип: Изобретение
Номер охранного документа: 0002645154
Дата охранного документа: 16.02.2018
18.05.2018
№218.016.50d1

Устройство первичной обработки радиолокационной информации

Изобретение относится к вычислительной технике и предназначено для цифровой обработки радиолокационных сигналов и управления аппаратурой в составе радиолокационного комплекса. Достигаемый технический результат - улучшение технических характеристик, а именно повышение производительности...
Тип: Изобретение
Номер охранного документа: 0002653293
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5b5d

Способ закалки тонкостенных длинномерных деталей из стали 12х2нвфа в управляемом потоке воздуха

Изобретение относится к области металлургии и может быть использовано в машиностроительной и радиотехнической промышленности. Техническим результатом изобретения является упрощение и сокращение процесса закалки и улучшение экологии. Для достижения технического результата длинномерные...
Тип: Изобретение
Номер охранного документа: 0002655875
Дата охранного документа: 29.05.2018
20.06.2018
№218.016.648f

Способ построения компактных делителей мощности свч сигналов

Изобретение относится к области сверхвысокочастотной радиотехники, в частности к делителям мощности. Способ построения компактных делителей мощности сверхвысокочастотных сигналов основан на объединении транснаправленных ответвителей в делитель, собираемый по квазицепочечной схеме с учетом...
Тип: Изобретение
Номер охранного документа: 0002658093
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.6640

Мобильный радиолокационный комплекс для обнаружения средств поражения и противодействия этим средствам

Изобретение относится к радиолокации и может быть использовано для обнаружения средств поражения и противодействия им. Достигаемым техническим результатом является расширение функциональных возможностей мобильной трехкоординатной радиолокационной станции (РЛС) обнаружения. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002658640
Дата охранного документа: 22.06.2018
25.06.2018
№218.016.678c

Способ и устройство определения модуля скорости баллистического объекта с использованием выборки квадратов дальности

Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора. Достигаемый технический результат - повышение точности определения модуля скорости баллистического объекта (БО) в РЛС с грубыми измерениями...
Тип: Изобретение
Номер охранного документа: 0002658317
Дата охранного документа: 20.06.2018
21.07.2018
№218.016.7380

Способ радиолокационного сопровождения объектов и рлс для его реализации

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения, работающих по целеуказанию. Достигаемый технический результат - увеличение производительности РЛС сопровождения за счет снижения временных потерь, вызванных задержкой в...
Тип: Изобретение
Номер охранного документа: 0002661889
Дата охранного документа: 20.07.2018
22.08.2018
№218.016.7e48

Полосно-заграждающий фильтр на несимметричной полосковой линии с использованием элементов фильтра нижних частот

Изобретение относится к СВЧ-технике и может быть использовано в технике связи и в радиолокации. Полосно-заграждающий фильтр содержит полосковую линию передачи, два параллельных контура с сосредоточенными LC параметрами, соединенных последовательно, две включенные параллельно входу устройства...
Тип: Изобретение
Номер охранного документа: 0002664469
Дата охранного документа: 20.08.2018
Показаны записи 21-25 из 25.
20.01.2018
№218.016.16c2

Способ формирования и обработки радиолокационных модифицированных фазоманипулированных сигналов

Изобретение относится к области радиолокации и предназначено для формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов в радиолокационных станциях. Техническим результатом является формирование модифицированного ФМ-сигнала, имеющего минимальные...
Тип: Изобретение
Номер охранного документа: 0002635875
Дата охранного документа: 16.11.2017
17.02.2018
№218.016.2bbb

Способ улучшения характеристик нелинейного радиолокатора

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ). Техническим результатом предлагаемого изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002643199
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.31ac

Способ сетевой обработки информации в автоматизированной системе обработки и обмена радиолокационной информацией

Изобретение относится к радиолокации и может быть использовано в автоматизированных системах управления, построенных на принципах сетевой информационной структуры, в части, касающейся передачи и обмена радиолокационной информацией (РЛИ), в автоматизированной системе обработки и обмена...
Тип: Изобретение
Номер охранного документа: 0002645154
Дата охранного документа: 16.02.2018
20.06.2018
№218.016.648f

Способ построения компактных делителей мощности свч сигналов

Изобретение относится к области сверхвысокочастотной радиотехники, в частности к делителям мощности. Способ построения компактных делителей мощности сверхвысокочастотных сигналов основан на объединении транснаправленных ответвителей в делитель, собираемый по квазицепочечной схеме с учетом...
Тип: Изобретение
Номер охранного документа: 0002658093
Дата охранного документа: 19.06.2018
11.03.2019
№219.016.daed

Конструкция выходного узла передающего канала модуля фазированной антенной решетки

Изобретение может быть использовано в приемо-передающих модулях активных фазированных антенных решеток (АФАР) с контрольными детекторными элементами в твердотельных радиолокационных станциях. Технический результат заключается в улучшении компоновочных возможностей и уменьшении габаритов модуля,...
Тип: Изобретение
Номер охранного документа: 0002324269
Дата охранного документа: 10.05.2008
+ добавить свой РИД