×
13.01.2017
217.015.7e72

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения сверхпроводящих керамических материалов различной плотности на основе сложного оксида YBaCuO, содержащего преимущественно фазу из наноструктурированных порошков, оптимально насыщенную кислородом, для изготовления компонентов электронной техники и электроэнергетики. Технический результат изобретения - разработка простого и высокоэффективного способа получения высокотемпературной сверхпроводящей керамики различной плотности, содержащей преимущественно фазу YBaCuO, оптимально насыщенную кислородом. Нитраты иттрия, бария и меди смешивают и растворяют в воде в соотношении материал:вода, равном 0,03:1, добавляют концентрированную азотную кислоту до полного растворения солей и глицерин в количестве 0,5-1,5% от общего количества водного раствора нитратов, выпаривают при непрерывном помешивании до образования густой жидкости, ее вспыхивания с образованием прекурсора в виде порошка, который, в свою очередь, нагревают до температур в интервале 350°С-915°С с выдержкой при этих температурах в течение 1-20 часов для формирования соответствующего распределения размера частиц, прессуют при 50-200 МПа и спекают при 920°С в течение 0,5-5 часов. 13 пр., 39 ил.

Изобретение относится к высокоэффективному способу получения сверхпроводящих керамических материалов различной плотности на основе сложного оксида YBa2Cu3O7-δ, содержащего преимущественно фазу оптимально насыщенную кислородом из наноструктурированных порошков для изготовления компонентов электронной техники и электроэнергетики.

Известны способы [1-5] получения высокотемпературных сверхпроводящих керамикна основе сложных оксидов. Основными недостатками способов описанных в [1-6] являются высокая дисперсность исходных частиц 1-10 мкм, которая не обеспечивает большую плотность при сравнительно низких температурах, а высокие температуры спекания приводит к механическим напряжениям и растрескиванию образцов, а так же необходимость многократных промежуточных помолов и спекания [1], сложность достижения стехиометрии по катионам (1:2:3) в виду того, что оксалаты соответствующих элементов растворяются при различных рН [2], многостадийность и необходимость термообработки в постоянном и импульсном магнитных и других полях, причем многократной [3].

Из известных способов получения высокотемпературной сверхпроводящей керамики на основе YBa2Cu3O7-δ наиболее близкими по технической сущности является материалы, описанные в [4-6].

В [4] описан способ получения высокотемпературной сверхпроводящей керамики из оксидных и карбонатных соединений иттрия, бария и меди путем смешивания и измельчения исходных компонентов в жидкой среде, гранулирования и термообработки шихты с изотермической выдержкой при максимальной температуре, отличающийся тем, что смешивание и измельчение проводят в водном растворе, содержащем 2 10% глицерина и 2 10% аммиака при соотношении массы исходных компонентов к раствору, равном 1 (0,3 0,4), а термообрабатывают гранулы слоем 5 10 мм при температуре 850 950°С, скорости подъема температуры 6 10 град/мин и выдержке ≥10 мин. Основным недостатком этого способа является необходимость механического измельчения исходных компонентов - оксидных и карбонатных соединений иттрия, бария и меди, путем мокрого помола, гранулирования и термообработки шихты для получения предварительного полуфабриката спека, однородного во всем объеме и содержащего 75-90% СП фазы.

В [5] описан способ получения нанопорошков на основе YBa2Cu3O7-δ методом сжигания нитрат - органических прекурсоров. Предварительно изготавливается водный раствор нитратов, содержащий эквимолярные количества соответствующих металлов. В этот раствор добавляется глицин в количестве, рассчитанном по окислительно-восстановительной реакции для получения соответственного сложного оксида. Раствор выпаривается до получения сухого стекловидного состояния, затем полученная масса сжигается. В процессе сжигания при ~500°С происходит выделение большого количества газообразных продуктов, в результате чего размеры зерен получаемого материала составляют>20 нм. Далее для получения порошков различной дисперсности прокаливаются при различных температурах от 500°С до 900°С.Размеры частиц после увеличения температуры прокаливания возрастает с небольшим отклонением от среднего значения.

Наиболее близким по технической сущности является способ получения материалов на основе Y(Ba1-x Вех)2Cu3O7-δ // Патент №2486161 от 27.06.2013, где 0≤х≤1, включающий термическое воздействие для синтеза соответствующих оксидов, и получают смеси нитратов иттрия, бария, бериллия и меди, которые обеспечивают соответствующие стехиометрические составы, с глицином, затем проводят термообработку указанной смеси, при которой процесс сжигания обеспечивает синтез при температуре 500°С и разрыхление получаемого конечного продукта; при этом получают нанопорошок с размером частиц 20-50 нм и проводят последующую термообработку порошка при температуре 500°С-900°С, в результате чего он рекристаллизуется до размеров частиц 20 нм - 10 мкм.

Основным недостатком способа получения высокотемпературной сверхпроводящей керамики различной плотности выше указанных источников является необходимость выполнения расчетов для компактирования порошков различной дисперсности от 20 нм до 10 мкм, высокие температуры (930-938°С), продолжительность спекания (>24 часов).

Задача предлагаемого изобретения - разработка простого и высокоэффективного способа получения высокотемпературной сверхпроводящей керамики различной плотности, содержащей преимущественно фазу YBa2Cu3O7-δ оптимально насыщенную кислородом из наноструктурированных порошков состоящих из частиц различной дисперсности.

Сущность изобретения

Способ получения сверхпроводящих керамических материалов сложного оксида YBa2Cu3O7-δ путем смешивания нитратов иттрия, бария и меди, растворения их в воде, выпаривания раствора после добавления топлива для сжигания, и термической обработки получаемых нанопорошков, их прессования и спекания, отличается тем, что нитраты, иттрия, бария и меди смешивают и растворяют в воде в соотношении материал - вода равном 0,03:1, добавляют концентрированную азотную кислоту, до полного растворения солей, и глицерин в количестве 0,5-1,5% от общего количества водного раствора нитратов, выпаривают при непрерывном помешивании до образования густой жидкости, ее вспыхивания с образованием прекурсора в виде порошка, который, в свою очередь, нагревают до температур в интервале 350°С-915°С с выдержкой при этих температурах в течение 1-20 часов, а для формирования соответствующего распределения размера частиц, прессуют при 50-200 МПа и спекают при 920°С в течение 0,5-5 часов.

При спекании керамических изделий, развитая поверхность исходных наноструктурированных порошков и естественное распределение в них частиц различных размеров, возникающее при различных температурах вспыхивания и соответствующей прокалке, способствуют формированию решетки YBa2Cu3O7-δ с оптимальным содержанием кислорода и с прогнозируемой плотностью. Температуры вспыхивания густой жидкости, образующейся при выпаривании водного раствора нитратов, оказываются различными в результате добавления разного количества глицерина. Прокалка образовавшегося прекурсора после вспыхивания соответствующей консистенции при различных температурах приводит к увеличению размера частиц обеспечивающая получение керамики различной плотности. При этом сохраняется установившееся после вспыхивания соотношение размеров частиц, способствующее формированию решетки YBa2Cu3O7-δ с оптимальным содержанием кислорода.

Пример 1.

Нитраты иттрия, бария и меди смешиваются и растворяют в воде в соотношение материал - вода (М-В) равной 0,03:1. В раствор добавляются концентрированная кислота до полного растворения солей. Затем добавляется глицерин в количестве 0,6% от общего количества водного раствора нитратов. Полученный раствор выпаривается. Процесс выпаривания сопровождается непрерывным перемешиванием до вспыхивания прекурсоров.

Полученный порошок нагревают до 350°С скоростью 10°С/мин и прокаливается в течении 1 часа. После термообработки порошок прессуется под давлением 100 МПа. Температура повышается со скоростью 1°С/мин до 920°С и спекается в течение 1 часа. Температура снижается со скоростью 4°С/мин до 450°С, выдерживается 5 часов, печь выключается.

Плотность и среднее значение размера наночастиц образца после спекания составляет 2.7 г/см3 и 52,4 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 1, а), б), в) соответственно.

Пример 2.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, полученный порошок нагревают до 910°С скоростью 5°С/мин и прокаливается в течении 20 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 5,72 г/см3 и 65,5 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 2, а), б), в) соответственно.

Пример 3.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, полученный порошок нагревают до 910°С скоростью 5°С/мин и прокаливается в течении 20 часов, спекание осуществляется при 920°С в течение 5 часов.

Плотность среднее значение размера наночастиц образца после спекания составляет 4,3 г/см3 и 76,4 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 3, а), б), в) соответственно.

Пример 4.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, полученный порошок нагревают до 915°С скоростью 5°С/мин и прокаливается в течении 20 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 4,85 г/см3 и 72,2 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 4, а), б), в) соответственно.

Пример 5.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 1,1%, полученный порошок нагревают до 700°С скоростью 6°С/мин и прокаливается в течении 1 час, спекание при 920°С в течение 5 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 3,41 г/см3 и 76,4 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 5, а), б), в) соответственно.

Пример 6.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 1,1%, полученный порошок нагревают до 910°С скоростью 5°С/мин и прокаливается в течение 20 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 5,19 г/см3 и 75,2 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 6, а), б), в) соответственно.

Пример 7.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 1,1%, полученный порошок нагревают до 910°С скоростью 5°С/мин и прокаливается в течение 20 часов, спекание при 920°С в течение 5 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 4,13 г/см3 и 83,4 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 7, а), б), в) соответственно.

Пример 8.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 1,4%, полученный порошок нагревают до 910°С скоростью 5°С/мин и прокаливается в течение 20 часов, спекание при 920°С в течение 5 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 4,44 г/см3 и 73,1 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 8, а), б), в) соответственно.

Пример 9.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 1,4%, полученный порошок нагревают до 915°С скоростью 5°С/мин и прокаливается в течение 20 часов

Плотность и среднее значение размера наночастиц образца после спекания составляет 4,58 г/см3 и 67,9 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 9, а), б), в) соответственно.

Пример 10.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, давление составляет 150 МПа

Плотность и среднее значение размера наночастиц образца после спекания составляет 3,0 г/см3 и 53,1 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 10, а), б), в) соответственно.

Пример 11.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, полученный порошок нагревают до 700°С скоростью 6°С/мин и прокаливается в течении 10 часов.

Плотность и среднее значение размера наночастиц образца после спекания составляет 3,4 г/см3 и 63,2 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 11, а), б), в) соответственно.

Пример 12.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 0,9%, полученный порошок нагревают до 700°С скоростью 6°С/мин и прокаливается в течении 10 часов, спекание при 920°С в течение 1 часа.

Плотность и среднее значение размера наночастиц образца после спекания составляет 3,8 г/см3 и 59,0 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 12, а), б), в) соответственно.

Пример 13.

В отличие от метода, приведенного в примере 1, при прочих равных условиях, добавляется глицерин в количестве 1,4%, полученный порошок нагревают до 700°С скоростью 6°С/мин и прокаливается в течении 1 часа, спекание при 920°С в течение 1 часа.

Плотность и среднее значение размера наночастиц образца после спекания составляет 3,5 г/см3 и 48,2 нм соответственно. Удельное электросопротивление (ρ), морфология, результаты дифракционного и фазового анализов приведены на рисунке 13, а), б), в) соответственно.

Таким образом, преимуществами предлагаемого способа являются возможность синтеза YBa2Cu3O7-δ в виде наноструктурированных порошков с различными соотношениями размеров частиц и получение из этих порошков высокотемпературной сверхпроводящей керамики: 1) оптимально насыщенной кислородом, 2) с примерно заданной плотностью, 3) в один этап спекания, 4) низкими энергозатратами, 5) трудозатратами, связанными с необходимостью расчетов и соответствующего компактирования порошков различной дисперсности.

Использованная литература

1. Палчаев Д.К., Мурлиева Ж.Х., Чакальский Б.К. Агеев А.В., Омаров A.К. Сверхпроводящий оксидный материал // Патент №2109712 от 27.04.1998.

2. Данилов В.П., Краснобаева О.Н., Носова Т.А., Кудинов И.Б.; Кецко В.А., Новоторцев В.М., Филатов А.В., Волков Е.А. Способ получения иттрий-барий-медь оксида // Патент №2019509 от 15.09.1994.

3. Соболев А.С, Козырев Л.В., Леонидов И.А., Фотиев А. Патент №2090954 от 20.09.1997.

4. Гиндуллина В.З., Корпачева А.И., Плетнев П.М., Корпачев М.Г., Федоров B.Е. Способ получения высокотемпературной сверхпроводящей керамики // Патент №2058958 от 27.04.1996.

5. Рабаданов М.Х., Палчаев Д.К., Хидиров Ш.Ш., Мурлиева Ж.Х., Самудов Ш.М., Ахмедов Ш.В., Асваров А.Ш. Способ получения материалов на основе Y(Ba1-x Bex)2Cu3O7-δ // Патент №2486161 от 27.06.2013.

6. Гаджимагомедов С.Х., Фараджева М.П., Табит А.Ф.А., Гамматаев С.Л., Хашафа А.Х.Д., Палчаев Д.К. Получение наноструктурированных материалов на основе YBa2Cu3O7-δ // Вестник ДГУ, 2014, Вып. 1, С. 36-42.

Способ получения сверхпроводящих керамических материалов сложного оксида YBaCuO путем смешивания нитратов иттрия, бария и меди, растворения их в воде, выпаривания раствора после добавления топлива для сжигания и термической обработки получаемых нанопорошков, их прессования и спекания, отличающийся тем, что нитраты иттрия, бария и меди смешивают и растворяют в воде в соотношении материал:вода, равном 0,03:1, добавляют концентрированную азотную кислоту до полного растворения солей и глицерин в количестве 0,5-1,5% от общего количества водного раствора нитратов, выпаривают при непрерывном помешивании до образования густой жидкости, ее вспыхивания с образованием прекурсора в виде порошка, который, в свою очередь, нагревают до температур в интервале 350°С-915°С с выдержкой при этих температурах в течение 1-20 часов для формирования соответствующего распределения размера частиц, прессуют при 50-200 МПа и спекают при 920°С в течение 0,5-5 часов.
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 32.
27.11.2014
№216.013.0afb

Способ определения аномальной дисперсии

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002534219
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.137e

Волновая электростанция

Изобретение относится к гидроэнергетике и может быть использовано в волновых и приливных энергетических установках, а также в качестве берегозащитного сооружения. Волновая электростанция содержит вертикальные направляющие стойки, поперечную балку, расположенную между ними, на которой...
Тип: Изобретение
Номер охранного документа: 0002536413
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.13ae

Установка для преобразования энергии качки плавающего судна

Изобретение относится к области нетрадиционных и возобновляющихся источников энергии, а именно волновой энергии и преобразования ее в другие виды, преимущественно в электрическую. Установка для преобразования качки плавающего судна содержит корпус из антикоррозийного материала, по бокам...
Тип: Изобретение
Номер охранного документа: 0002536462
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1dcd

Способ получения пятиокиси фосфора

Изобретение может быть использовано в химической промышленности. Способ получения пятиокиси фосфора включает сгорание фосфора в автоклаве при температуре 50-60 °C при подаче кислорода под давлением 0,06-0,07 МПа. Полученный продукт выделяют из газовой фазы охлаждением автоклава. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002539057
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e25

Способ получения сложного азотно-фосфорного удобрения

Изобретение относится к сельскому хозяйству. Способ получения сложного азотно-фосфорного удобрения включает нейтрализацию аммиаком азотной кислоты с добавкой фосфорной кислоты, причем в автоклав подают раствор азотной кислоты и фосфора и затем кислород под давлением 0,5-0,6 МПа, а полученный...
Тип: Изобретение
Номер охранного документа: 0002539145
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3b52

2-меркаптобензтеллуразолы и способ их получения

Изобретение относится к области химии гетероциклических соединений, а именно к способу получения 2-меркаптобензтеллуразолов, имеющих структурную формулу: где R=H, СНТакже предложен способ получения 2-меркаптобензтеллуразолов. Полученные соединения обладают антиоксидантной активностью. 2 н.п....
Тип: Изобретение
Номер охранного документа: 0002546674
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b8e

Способ группового извлечения тяжелых металлов и модифицированный сорбент для его осуществления

Изобретение относится к области аналитической химии, химической технологии и экологии. Предложен способ группового извлечения меди, цинка и кадмия, включающий сорбционное концентрирование металлов на амберлите IRA-400, модифицированном 2,7-бисазопроизводным хромотроповой кислоты. Амберлит...
Тип: Изобретение
Номер охранного документа: 0002546734
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f40

Аккумулятор теплоты с фазопереходным материалом

Изобретение относится к теплоэнергетике и может быть использовано для аккумулирования тепловой энергии. Сущность изобретения в том, что аккумулятор теплоты с фазопереходным материалом, содержащий корпус, заполненный теплоаккумулирующим материалом с фазовым переходом в зоне рабочих температур,...
Тип: Изобретение
Номер охранного документа: 0002547680
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fd1

Способ фазовой модуляции световой волны

Изобретение относится к области оптической спектроскопии и может быть применено при разработке новых методов нестационарной оптической спектроскопии, позволяющих исследовать свойства неоднородной плазмы в области аномальной дисперсии. Технический результат изобретения - получение внутри...
Тип: Изобретение
Номер охранного документа: 0002547825
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.5b2b

Способ получения метансульфокислоты

Изобретение относится к технологии получения серосодержащих органических соединений, в частности к синтезу метансульфокислоты. Метансульфокислота используется в качестве катализатора реакций нитрования, ацилирования, этерификации и полимеризации олефинов. Она также используется в химической,...
Тип: Изобретение
Номер охранного документа: 0002554880
Дата охранного документа: 27.06.2015
Показаны записи 11-20 из 34.
27.11.2014
№216.013.0afb

Способ определения аномальной дисперсии

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002534219
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.137e

Волновая электростанция

Изобретение относится к гидроэнергетике и может быть использовано в волновых и приливных энергетических установках, а также в качестве берегозащитного сооружения. Волновая электростанция содержит вертикальные направляющие стойки, поперечную балку, расположенную между ними, на которой...
Тип: Изобретение
Номер охранного документа: 0002536413
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.13ae

Установка для преобразования энергии качки плавающего судна

Изобретение относится к области нетрадиционных и возобновляющихся источников энергии, а именно волновой энергии и преобразования ее в другие виды, преимущественно в электрическую. Установка для преобразования качки плавающего судна содержит корпус из антикоррозийного материала, по бокам...
Тип: Изобретение
Номер охранного документа: 0002536462
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1dcd

Способ получения пятиокиси фосфора

Изобретение может быть использовано в химической промышленности. Способ получения пятиокиси фосфора включает сгорание фосфора в автоклаве при температуре 50-60 °C при подаче кислорода под давлением 0,06-0,07 МПа. Полученный продукт выделяют из газовой фазы охлаждением автоклава. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002539057
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e25

Способ получения сложного азотно-фосфорного удобрения

Изобретение относится к сельскому хозяйству. Способ получения сложного азотно-фосфорного удобрения включает нейтрализацию аммиаком азотной кислоты с добавкой фосфорной кислоты, причем в автоклав подают раствор азотной кислоты и фосфора и затем кислород под давлением 0,5-0,6 МПа, а полученный...
Тип: Изобретение
Номер охранного документа: 0002539145
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3b52

2-меркаптобензтеллуразолы и способ их получения

Изобретение относится к области химии гетероциклических соединений, а именно к способу получения 2-меркаптобензтеллуразолов, имеющих структурную формулу: где R=H, СНТакже предложен способ получения 2-меркаптобензтеллуразолов. Полученные соединения обладают антиоксидантной активностью. 2 н.п....
Тип: Изобретение
Номер охранного документа: 0002546674
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b8e

Способ группового извлечения тяжелых металлов и модифицированный сорбент для его осуществления

Изобретение относится к области аналитической химии, химической технологии и экологии. Предложен способ группового извлечения меди, цинка и кадмия, включающий сорбционное концентрирование металлов на амберлите IRA-400, модифицированном 2,7-бисазопроизводным хромотроповой кислоты. Амберлит...
Тип: Изобретение
Номер охранного документа: 0002546734
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f40

Аккумулятор теплоты с фазопереходным материалом

Изобретение относится к теплоэнергетике и может быть использовано для аккумулирования тепловой энергии. Сущность изобретения в том, что аккумулятор теплоты с фазопереходным материалом, содержащий корпус, заполненный теплоаккумулирующим материалом с фазовым переходом в зоне рабочих температур,...
Тип: Изобретение
Номер охранного документа: 0002547680
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fd1

Способ фазовой модуляции световой волны

Изобретение относится к области оптической спектроскопии и может быть применено при разработке новых методов нестационарной оптической спектроскопии, позволяющих исследовать свойства неоднородной плазмы в области аномальной дисперсии. Технический результат изобретения - получение внутри...
Тип: Изобретение
Номер охранного документа: 0002547825
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.5b2b

Способ получения метансульфокислоты

Изобретение относится к технологии получения серосодержащих органических соединений, в частности к синтезу метансульфокислоты. Метансульфокислота используется в качестве катализатора реакций нитрования, ацилирования, этерификации и полимеризации олефинов. Она также используется в химической,...
Тип: Изобретение
Номер охранного документа: 0002554880
Дата охранного документа: 27.06.2015
+ добавить свой РИД