×
13.01.2017
217.015.7cc9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИОКСИДА ЦИРКОНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллического порошка диоксида циркония, стабилизированного добавками редкоземельных элементов (РЗЭ), и может быть использовано для изготовления катализаторов и сорбентов, технической керамики различного назначения (теплозащитных материалов, твердых электролитов для твердооксидных топливных элементов и т.д.). Описан способ получения нанопорошка диоксида циркония, включающий осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, где стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол.% DyO, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С. Технический результат: получение однофазного, нанокристаллического, малоагрегированного порошка диоксида циркония с кубической структурой. 2 ил., 2 пр.

Предлагаемое изобретение относится к технологии неорганических материалов, в частности к способам получения нанокристаллического порошка диоксида циркония, стабилизированного добавками редкоземельных элементов (РЗЭ), и может быть использовано для изготовления катализаторов и сорбентов, технической керамики различного назначения (теплозащитных материалов, твердых электролитов для твердооксидных топливных элементов и т.д.).

Наиболее эффективными способами получения нанокристаллического порошка диоксида циркония являются методы синтеза из водной фазы (соосаждение, золь-гель метод) с последующим прокаливанием прекурсоров до соответствующего оксида [1]. Диоксид циркония в зависимости от условий получения может находиться в трех полиморфных модификациях: моноклинной, тетрагональной и кубической. Главными недостатками получаемых материалов являются возможное наличие в них моноклинной фазы, а также высокая степень агрегации получаемых нанокристаллических порошков. Однако для получения катализаторов и сорбентов с высокой активной поверхностью, а также плотной керамики с высокой прочностью необходимо в качестве исходных веществ использовать малоагрегированные нанокристаллические порошки диоксида циркония, имеющие высокотемпературную (тетрагональную или кубическую) кристаллическую структуру.

Одним из способов стабилизации высокотемпературных фаз ZrO2 является введение добавок структурно близких к нему оксидов, образующих устойчивые твердые растворы с кристаллической структурой типа флюорита. В качестве стабилизирующих добавок используют следующие оксиды: MgO, CaO, Y2O3, CeO2, ThO2, Ln2O3 (Ln - РЗЭ), образующих с ZrO2 твердые растворы [2].

Известен способ получения композиции на основе оксидов циркония, празеодима, лантана или неодима для использования в каталитической системе [3], по которому для получения материала с удельной поверхностью 29 м2/г после прокаливания при 1000°С в течение 10 ч смесь соединений циркония и добавки осаждается основанием, полученная суспензия нагревается и к ней добавляется анионный или неионогенный ПАВ и далее осадок прокаливается. Недостатком данного способа является добавление ПАВ, приводящее к возможному загрязнению углеродом конечного продукта, а также возможность агрегации частиц в ходе сушки и их спекания в процессе прокаливания.

В литературе описаны способы получения порошка диоксида циркония [4], согласно которым для снижения агрегации порошков диоксида циркония после осаждения гидроксида циркония (с добавкой ионов иттрия) промытый осадок подвергается действию СВЧ-сушки, импульсного магнитного поля (ИМП) и ультразвукой (УЗ) обработке, после чего прокаливают при температурах 350-900°С, что приводит к получению нанопорошка диоксида циркония с размером кристаллитов 5-25 нм, удельной поверхностью 40-135 м2/г и легко разрушающимися агломератами. Недостатком описанных в [4] способов является возможность агрегации частиц (кристаллитов) диоксида циркония из-за их спекания в процессе прокаливания с образованием агрегатов размером 500-1000 нм и более.

Наиболее близким к предлагаемому изобретению и принятым в качестве прототипа является способ получения диоксида циркония, описанный в патенте [5], согласно которому после осаждения гидроксида циркония (с добавкой ионов иттрия) стадии сушки и прокаливания проводят одновременно под действием СВЧ-излучения в частотном диапазоне 500-20000 МГц с непрерывной мощностью 3,0-50,0 кВт в течение 5-60 мин.

Недостатком прототипа является получение только тетрагональной фазы ZrO2 (Y2O3).

Технический результат заключается в получении однофазного, нанокристаллического, малоагрегированного порошка диоксида циркония с кубической структурой.

Это достигается тем, что в способе получения нанопорошка диоксида циркония, включающем осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол. % Dy2O3, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С.

Добавка оксида диспрозия в количестве 7-10 мол. % обеспечивает содержание ионов диспрозия для получения кубической фазы. Использование добавки оксида диспрозия в количестве менее 7 мол. % приводит к появлению примеси моноклинной фазы в порошке ZrO2(Dy2O3), использование добавки оксида диспрозия в количестве более 10 мол. % не приводит к изменению фазового состава порошка ZrO2(Dy2O3).

Данный способ получения был реализован в микроволновой печи «HAMiLab-C1500». В качестве исходных веществ были использованы оксихлорид циркония ZrOCl2×8H2O, нитрат диспрозия Dy(NO3)3×5H2O, 25% водный раствор аммиака NH4OH, дистиллированная вода.

Пример 1. 22,3 г ZrOCl2×8H2O и 5,1 г Dy(NO3)3×5H2O растворяли в 200 мл дистиллированной воды. Полученный раствор фильтровали для удаления нерастворимых взвешенных частиц, получая прозрачный раствор солей с рН 0,8-0,9. 19 мл 25% NH4OH доводили до 100 мл дистиллированной водой. При интенсивном перемешивании раствор смеси солей Zr и Dy дозировали в раствор аммиака, получая вязкую суспензию белого цвета с рН 9,5-10,0.

Полученную суспензию фильтровали и далее осадок гидроксида циркония промывали дистиллированной водой до отсутствия в промывных водах растворимых анионов. Промытый осадок переносили в кварцевый тигель и помещали в микроволновую печь. Процесс сушки и прокаливания проводили под действием СВЧ-излучения с рабочей частотой 2450 МГц и непрерывной мощностью 1,5 кВт в течение 3 ч 30 мин (30 мин нагрев до 800°С, 3 ч изотермический отжиг при 800°С) с получением нанопорошка диоксида циркония, стабилизированного добавкой ионов оксида диспрозия, ZrO2(7,2 мол. % Dy2O3). Рентгенографический анализ показал наличие нанокристаллитов кубической фазы диоксида циркония c-ZrO2 с размером ОКР 22 нм (фиг. 1). Удельная поверхность (по БЭТ) полученного нанокристаллического порошка диоксида циркония составила 33 м2/г. Размер частиц (агрегатов) составил менее 1000 нм (фиг. 2).

Пример №2. Процесс получения гидроксида циркония и его дальнейшей обработки в микроволновой печи осуществляется, как описано в примере №1. Отличие состоит в том, что в ходе процесса масса добавки Dy(NO3)3×5H2O составила 3,85 г. Рентгенографический анализ полученного порошка ZrO2(5,6 мол. % Dy2O3) показал, что продукт имеет примесь моноклинной фазы в количестве 11%.

Пример №3. Процесс получения гидроксида циркония и его дальнейшей обработки в микроволновой печи осуществляется, как описано в примере №1. Отличие состоит в том, что в ходе процесса масса добавки Dy(NO3)3×5H2O составила 8,2 г. Рентгенографический анализ полученного порошка ZrO2(10,6 мол.% Dy) показал наличие нанокристаллитов кубической фазы диоксида циркония c-ZrO2 с размером ОКР 20 нм. Удельная поверхность (по БЭТ) полученного нанокристаллического порошка диоксида циркония составила 35 м2/г.

Таким образом, приведенные примеры показывают, что введение добавки ионов диспрозия в гидроксид циркония на стадии осаждения в количестве 7-10 мол. % Dy2O3, а также проведение последующей сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения позволяет получать однофазный, нанокристаллический, малоагрегированного порошка диоксида циркония с кубической структурой.

Предлагаемый способ может быть также распространен на диоксид циркония, стабилизированный добавками других РЗЭ.

СПИСОК ЛИТЕРАТУРЫ

1. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. М.: Академкнига, 2006, 309 с.

2. Рутман Д.С., Торопов Ю.С., Плинер С.Ю. и др. Высокоогнеупорные материалы из диоксида циркония. М.: Металлургия, 1985, 130 с.

3. Патент WO №2005082782, кл. B01D 53/94.

4. Konstantinova Т.Е., et. al. The mechanisms of particle formation in Y-doped ZrO2 // Int. J. Nanotechnology, 2006, v. 3, №1, p. 29-38.

5. Патент РФ №2404125, кл. C01G 25/02.

Способ получения нанопорошка диоксида циркония, включающий осаждение гидроксида циркония с добавкой редкоземельного элемента, одновременное проведение сушки и прокаливания промытой пасты прекурсора в микроволновой печи под действием СВЧ-излучения с фиксированной частотой 2450 МГц, отличающийся тем, что стадию осаждения проводят, используя добавку ионов диспрозия в количестве 7-10 мол.% DyO, при этом мощность СВЧ-излучения составляет 1,5 кВт, время процесса 3,5 ч при температуре 800°С.
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИОКСИДА ЦИРКОНИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА ДИОКСИДА ЦИРКОНИЯ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 558.
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8afb

Отражательная линия задержки

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных...
Тип: Изобретение
Номер охранного документа: 0002567186
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9380

Способ измерения пространственного распределения ионной температуры водородной плазмы

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует...
Тип: Изобретение
Номер охранного документа: 0002569379
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.944a

Микроволновый одноканальный радиоинтерферометр с волноведущим зондирующим трактом

Изобретение относится к радиоэлектронной технике микроволнового диапазона и может быть использовано для измерения параметров быстропротекающих процессов движения различных материальных объектов, ударно-волновых и детонационных фронтов, плазмы. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002569581
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a7

Пространственный симметричный магнитопровод

Изобретение относится к электротехнике и может быть использовано в магнитопроводах электрооборудования. Технический результат состоит в повышении мощности, снижении потерь энергии на вихревые токи и тока хх. Магнитопровод выполнен из аморфного ферромагнитного ленточного материала и содержит...
Тип: Изобретение
Номер охранного документа: 0002569931
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.95ef

Радиопоглощающий материал

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц). Радиопоглощающий материал содержит полимерное связующее и наполнитель - углеродные нанотрубки, предварительно обработанные в смеси...
Тип: Изобретение
Номер охранного документа: 0002570003
Дата охранного документа: 10.12.2015
Показаны записи 231-240 из 412.
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8afb

Отражательная линия задержки

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных...
Тип: Изобретение
Номер охранного документа: 0002567186
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9380

Способ измерения пространственного распределения ионной температуры водородной плазмы

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует...
Тип: Изобретение
Номер охранного документа: 0002569379
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.944a

Микроволновый одноканальный радиоинтерферометр с волноведущим зондирующим трактом

Изобретение относится к радиоэлектронной технике микроволнового диапазона и может быть использовано для измерения параметров быстропротекающих процессов движения различных материальных объектов, ударно-волновых и детонационных фронтов, плазмы. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002569581
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a7

Пространственный симметричный магнитопровод

Изобретение относится к электротехнике и может быть использовано в магнитопроводах электрооборудования. Технический результат состоит в повышении мощности, снижении потерь энергии на вихревые токи и тока хх. Магнитопровод выполнен из аморфного ферромагнитного ленточного материала и содержит...
Тип: Изобретение
Номер охранного документа: 0002569931
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.95ef

Радиопоглощающий материал

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц). Радиопоглощающий материал содержит полимерное связующее и наполнитель - углеродные нанотрубки, предварительно обработанные в смеси...
Тип: Изобретение
Номер охранного документа: 0002570003
Дата охранного документа: 10.12.2015
+ добавить свой РИД