×
13.01.2017
217.015.7bf1

Результат интеллектуальной деятельности: ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ

Вид РИД

Изобретение

№ охранного документа
0002600125
Дата охранного документа
20.10.2016
Аннотация: Изобретение относится к области электротехники. Для передачи электроэнергии между системой постоянного напряжения и, по меньшей мере, n-фазной системой переменного напряжения создан преобразователь (10), содержащий n-фазный трансформатор (20) и преобразовательную схему (12) из n-го числа ММС-модулей (30), причем число n составляет, по меньшей мере, три. ММС-модули (30) включены последовательно. Преобразователь (10) содержит развязывающие конденсаторы (16) для подвода электроэнергии к трансформатору (20) и/или для отбора электроэнергии от него. Каждая обмотка (21) первой стороны (21s) трансформатора (20) образует с одним из развязывающих конденсаторов (16) последовательную схему (17), причем каждая из последовательных схем (17) включена параллельно одному из ММС-модулей (30). Кроме того, созданы способы (100, 200) эксплуатации для преобразования постоянного напряжения (U), по меньшей мере, в трехфазное переменное напряжение (U, , ) и для преобразования, по меньшей мере, трехфазного переменного напряжения (U, , ) в постоянное напряжение (U). 3 н. и 15 з.п. ф-лы, 7 ил.

Изобретение относится к преобразователю, содержащему n-фазный трансформатор и преобразовательную схему из n-го числа ММС-модулей, причем число n составляет, по меньшей мере, три. Каждый ММС-модуль содержит, по меньшей мере, два последовательно включенных подмодуля. Каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту. Каждая ветвь каждого полумоста содержит полупроводниковый выключатель. ММС-модули включены последовательно, а между непосредственно соединенными между собой электрически ММС-модулями предусмотрен соответствующий электрический отвод. Преобразователь можно назвать также «модульным многоуровневым преобразователем» или ММС (modular multilevel converter).

Кроме того, изобретение относится к способу эксплуатации для преобразования постоянного напряжения, по меньшей мере, в трехфазное переменное напряжение и к способу эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения в постоянное напряжение.

Из диссертации Rohner, S., «Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen», Технический университет Дрездена, 2010 г., стр. 14, рис. 2.2 известна преобразовательная схема. Она является комплексной и сложной в изготовлении, поскольку для этого необходимо реализовать, по меньшей мере, шесть ММС-модулей, причем каждый из них должен иметь достаточное число подмодулей, чтобы обеспечить достаточную электрическую прочность. Кроме того, каждый ММС-модуль требует индуктивность, чтобы подавлять присущие ММС-модулям переменные токи между ними. В случае электрической питающей сети на основе постоянного тока или же в случае постоянноточного соединения «точка-точка» с напряжениями выше ста или нескольких сот киловольт нередко ставится задача, заключающаяся в том, чтобы в промежуточном месте отобрать небольшую мощность (например, к промежуточному потребителю или к рабочему устройству постоянноточного соединения). В качестве альтернативы или дополнительно может быть также поставлена задача, заключающаяся в том, чтобы в промежуточном месте ввести небольшую мощность (например, от источника энергии и/или от места потребления энергии другой питающей сети, лежащего на пути передачи). «Небольшой мощностью» здесь называется мощность, которая заметно меньше всей передаваемой мощности передачи постоянного тока.

Задачей изобретения является создание преобразователя на основе ММС-модулей, который менее сложен в изготовлении (в частности, для небольших мощностей), чем известный преобразователь. Кроме того, задачей изобретения является создание соответствующего способа эксплуатации. Это относится, в частности, к эксплуатации в системе передачи постоянного тока с напряжениями выше ста или нескольких сот киловольт.

Согласно изобретению, эта задача решается за счет того, что создан преобразователь, содержащий n-фазный трансформатор и преобразовательную схему из n-го числа ММС-модулей, причем число n составляет, по меньшей мере, три. Каждый ММС-модуль содержит, по меньшей мере, два последовательно включенных подмодуля. Каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту. Каждая ветвь каждого полумоста содержит полупроводниковый выключатель, причем ММС-модули включены последовательно, а между непосредственно соединенными между собой электрически ММС-модулями предусмотрен соответствующий электрический отвод. Преобразователь содержит развязывающие конденсаторы для подвода электроэнергии к трансформатору и/или для отбора электроэнергии от него. Каждая обмотка первой стороны трансформатора образует с одним из развязывающих конденсаторов последовательную схему, причем каждая из последовательных схем включена параллельно одному из ММС-модулей.

В части способа эксплуатации для преобразования постоянного напряжения, по меньшей мере, в трехфазное переменное напряжение задача решается за счет того, что способ эксплуатации включает в себя следующие этапы:

- приложение постоянного напряжения к последовательной схеме из ММС-модулей, причем каждый из ММС-модулей содержит, по меньшей мере, два последовательно включенных подмодуля, причем каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту, причем каждая ветвь каждого полумоста содержит полупроводниковый выключатель,

- сдвинутое по фазе управление ММС-модулями для вырабатывания нескольких сдвинутых по фазе напряжений на выводах ММС-модулей и

- приложение сдвинутых по фазе напряжений к обмоткам первой стороны многофазного трансформатора посредством развязывающих конденсаторов.

В части способа эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения в постоянное напряжение задача решается за счет того, что способ эксплуатации включает в себя следующие этапы:

- приложение, по меньшей мере, трехфазного переменного напряжения ко второй стороне трансформатора,

- отбор, по меньшей мере, трехфазных напряжений на обмотках первой стороны многофазного трансформатора посредством развязывающих конденсаторов,

- сдвинутое по фазе управление последовательно включенными ММС-модулями для вырабатывания нескольких сдвинутых по фазе напряжений на выводах ММС-модулей, причем каждый из ММС-модулей содержит, по меньшей мере, два последовательно включенных подмодуля, причем каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту, причем каждая ветвь каждого полумоста содержит полупроводниковый выключатель.

С одной стороны, предложенная преобразовательная схема (по сравнению с известной) приводит к дополнительным затратам на развязывающие конденсаторы. С другой стороны (по сравнению с известной преобразовательной схемой), требуется лишь вполовину меньше ММС-модулей и (при той же электрической прочности каждого подмодуля) только одна n-ая подмодулей. Предложенные преобразовательная схема и преобразователь могут быть, в частности, менее дорогими в изготовлении и обеспечить менее затратное применение предложенного способа эксплуатации тогда, когда с помощью преобразователя лишь относительно небольшая мощность отбирается из системы постоянного напряжения или вводится в нее, однако по производственно-техническим причинам для ММС-модулей задана более высокая минимальная пропускная способность по мощности. Описанные здесь и далее способы эксплуатации (без ограничения всеобщности) применимы с предложенной преобразовательной схемой и любым предложенным преобразователем.

При симметричной работе ММС-модулей управление каждым из них происходит так, что среднее арифметическое (т.е. доля постоянного напряжения) падения напряжения на ММС-модуле составляет одну n-ую постоянного напряжения между проводами постоянного напряжения. Кроме того, при симметричной работе ММС-модулей сумма долей переменного напряжения выработанных ММС-модулями частичных напряжений в любой момент составляет 0 вольт. Из этого следует, что при симметричной работе предложенной преобразовательной схемы ММС-модули не вызывают в проводах постоянного напряжения никаких переменных токов. Поскольку отсутствует параллельная схема из ММС-ветвей, можно отказаться от обычных в известных преобразовательных схемах индуктивностей для блокировки переменного тока (круговые токи) между ММС-модулями. Целесообразно, если двойная амплитуда выработанных отдельными ММС-модулями долей переменного напряжения не выше одной n-ой постоянного напряжения между проводами постоянного напряжения.

Может быть предпочтительным, если для двух последовательных схем, электрически соединенных с одним и тем же отводом, предусмотрено только одно электрическое соединение с отводом. За счет этого токи схемотехнически соседних последовательных схем могут временно, по меньшей мере, частично компенсироваться на своем общем подающем проводе. Это уменьшает поля рассеяния и омические потери. Для общих подводящих проводов можно выбрать меньшее общее сечение.

Предпочтительно, если преобразователь содержит блок ММС-управления полупроводниковыми выключателями, чтобы посредством преобразовательной схемы вырабатывать для последовательных схем несколько сдвинутых по фазе по отношению друг к другу напряжений. За счет этого на заводе-изготовителе можно протестировать совместимость блока управления с ММС-модулями и их подключение к блоку управления и уменьшить опасность функциональных сбоев.

Также может быть предпочтительным, если частное от деления эффективного значения падения напряжения на одной из последовательных схем на эффективное значение падения напряжения на развязывающем конденсаторе последовательной схемы больше 6 или 10, особенно предпочтительно больше 20. Это минимизирует влияние емкости на характер управления.

В отношении способа эксплуатации предпочтительно, если сумма падений напряжения на ММС-модулях постоянная. Благодаря этому предотвращаются доли переменного напряжения и возникновение переменной доли электрического поля между присоединительными проводами стороны постоянного напряжения.

В отношении способа эксплуатации предпочтительно, если ток через последовательную схему из ММС-модулей постоянный. Благодаря этому предотвращаются или, по меньшей мере, уменьшаются доли переменного напряжения и возникновение переменной доли магнитного поля на присоединительных проводах стороны постоянного напряжения.

В отношении способа эксплуатации может быть также целесообразным, если сумма падений напряжения на ММС-модулях не зависит от нагрузки. Благодаря этому может быть создан источник переменного или постоянного напряжения, которое имеет низкое внутреннее сопротивление с точки зрения соответственно подключенного потребителя.

Изобретение более подробно поясняется со ссылкой на прилагаемые чертежи, на которых схематично изображают:

фиг. 1 - первый вариант выполнения преобразователя, содержащего преобразовательную схему и трансформатор трехфазного тока;

фиг. 2 - возможную простейшую схему ММС-модуля;

фиг. 3 - возможную простейшую схему ММС-подмодуля;

фиг. 4 - (для первого и второго вариантов) характеристики напряжения ММС-модулей и суммарного напряжения во время работы преобразователя;

фиг. 5 - второй вариант выполнения преобразователя, содержащего преобразовательную схему и трансформатор трехфазного тока;

фиг. 6 - блок-схему варианта способа эксплуатации для преобразования постоянного напряжения, по меньшей мере, в трехфазное переменное напряжение;

фиг. 7 - блок-схему варианта способа эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения в постоянное напряжение.

Описанные ниже примеры представляют собой предпочтительные варианты осуществления изобретения.

Преобразователи на основе ММС-модулей подходят для преобразования постоянного напряжения UDC в многофазное переменное напряжение U22, , и для преобразования многофазного переменного напряжения U22, , в постоянное напряжение UDC. На фиг. 1 изображен первый вариант преобразователя 10. Он содержит преобразовательную схему 12, блок ММС-управления 14, развязывающие конденсаторы 16 и три отдельных трансформатора 20u, 20v, 20w или один трансформатор 20 трехфазного тока. В случае преобразователя 10 с кратным трем фазам (например, 12-фазная система) может использоваться кратное трансформаторов трехфазного тока. Преобразовательная схема 12 содержит три последовательно включенных ММС-модуля 30.

Преобразователи 10 со стороны постоянного напряжения могут быть конфигурированы и эксплуатироваться «спинкой к спинке» для их использования, например, в качестве преобразователей напряжения и/или для выполнения одной или нескольких следующих функций: преобразователь частоты, устройство изменения числа фаз, компенсатор реактивной мощности, устройство изменения внутреннего сопротивления, силовой выключатель, устройство разделения потенциалов.

Преобразователи 10 со стороны переменного напряжения могут быть конфигурированы и эксплуатироваться «спинкой к спинке» для их использования, например, в качестве преобразователей постоянного напряжения (DC/DC-преобразователи) и/или для выполнения одной или нескольких следующих функций: устройство изменения внутреннего сопротивления, силовой выключатель, устройство разделения потенциалов.

Каждый ММС-модуль 30 (соответственно с выводами a и b) содержит последовательную схему из m-го числа ММС-подмодулей 40 (соответственно с выводами c и d), простейшая схема которых поясняется в описании фиг. 3. Число m ММС-подмодулей 40 составляет, по меньшей мере, 2 и, как правило, в несколько раз больше 2.

Блок ММС-управления 14 формирует управляющие сигналы g1i, g2i для управления (содержащимися в ММС-модулях 30) ММС-подмодулями 40. На чертежах индекс i в управляющих сигналах g1i, g2i должен напоминать о том, что блок управления 14 предназначен для формирования для каждого ММС-подмодуля 40 собственной пары управляющих сигналов g1i, g2i, т.е., в общей сложности, m пар управляющих сигналов g1i, g2i. Посредством управляющих сигналов g1i, g2i блок управления 14 влияет на соотношение частичных напряжений u1, u2, u3 на последовательно включенных ММС-модулях 30.

Параллельно каждому ММС-модулю 30 включена собственная последовательная схема 17, содержащая соответственно один из развязывающих конденсаторов 16 и одну из первичных обмоток 21 трансформаторов 20u, 20v, 20w.

Изображенные на фиг. 1 и 5 варианты можно использовать также в обратном направлении передачи мощности, т.е. для выпрямления и/или подачи электрической мощности в систему постоянного напряжения. Для наглядности в нижеследующем описании фигур термин «первичная обмотка» употребляется также в том случае, когда преобразователь 10 используется для выпрямления (т.е. для вырабатывания постоянного тока из трехфазного тока) вместо инвертирования (т.е. для вырабатывания трехфазного тока из постоянного тока). То же относится к термину «вторичная обмотка».

В примере на фиг. 1 вторичные обмотки 22 трансформаторов 20u, 20v, 20w и трансформатора 20 трехфазного тока соединены в звезду. В качестве альтернативы вторичные обмотки 22 могут быть соединены в треугольник.

ММС-модуль 30 на фиг. 2 содержит последовательную схему из m-го числа ММС-подмодулей 40, устройство и принцип работы которых более подробно поясняются ниже с помощью фиг. 3. Число m составляет, по меньшей мере, 2 и, как правило, в несколько раз больше 2. Каждый ММС-подмодуль 40 имеет пару управляющих выводов g1i, g2i, с помощью которых на его коммутационное состояние может влиять блок управления 14. Чтобы демпфировать доли переменного тока выше частоты сети, в каждом ММС-модуле 30 может быть последовательно включена индуктивность L30 и/или последовательно с преобразовательной схемой 12 - индуктивность L12 (фиг. 1).

ММС-подмодуль 40 на фиг. 3 содержит последовательную схему 43 из двух IGBT (биполярные транзисторы с изолированным затвором). При этом эмиттер 41e первого IGBT 41 электрически соединен с коллектором 42c второго IGBT 42. Последовательная схема 43 из двух IGBT 41, 42 перекрыта емкостью 44. Для этого первый вывод e1 емкости 44 электрически соединен с коллектором 41с IGBT 41, а второй вывод e2 емкости 44 - с эмиттером 42e IGBT 42. Между эмиттером 41e и коллектором 41с IGBT 41 расположен безынерционный диод 41d. Между эмиттером 42e и коллектором 42с IGBT 42 расположен безынерционный диод 42d.

Когда IGBT 42 заперт, а к выводам c, d ММС-подмодуля 40 приложено большее напряжение Ucd, чем к емкости 44, последняя заряжается через безынерционный диод 41d. Когда IGBT 41 отперт, в то время как IGBT 42 заперт, а к выводам c, d ММС-подмодуля 40 приложено меньшее напряжение Ucd, чем к емкости 44, последняя может разряжаться через безынерционный диод 41d, т.е. электрическая энергия отдается на выводы c, d ММС-подмодуля 40. Когда IGBT 41 заперт, в то время как IGBT 42 отперт, выводы c, d ММС-подмодуля 40 короткозамкнуты, а емкость 44 сохраняет свое заряженное состояние. Посредством известного управления несколькими последовательно включенными ММС-подмодулями 40 можно для каждого ММС-модуля 30 настроить почти любую характеристику напряжения. Следовательно, можно достичь эксплуатационной характеристики ММС-модулей, идентичной управляемому источнику напряжения, который, однако, в среднем значении не может ни отдавать, ни потреблять мощность.

На фиг. 4 изображены возможные для примеров, изображенных на фиг. 1, 5, и для каждого из трех частичных напряжений u1, u2, u3 характеристики в зависимости от времени t. Каждая фаза имеет постоянную долю 1 и переменную долю с амплитудой 1. Частичные напряжения u1, u2, u3 и постоянная доля представляют собой относительные величины, отнесенные к масштабному коэффициенту, например, 1 MB. В данном примере период составляет приблизительно 6 мс, а частота f - приблизительно 167 Гц. Чем выше частота f, тем компактнее могут быть выполнены трансформаторы. При непосредственном подключении к сети трехфазного тока преобразователь следует эксплуатировать с частотой этой сети.

На максимуме u1(tmax1) первой фазы u1(t) переменная доля составляет, следовательно, 1, тогда как переменная доля сдвинутых на ±120° обеих других фаз u2, u3 составляет в этот момент -0,5. Из этого следует, что в этот момент tmax1 сумма Σui(tmax1) частичных напряжений u1(tmax1)+u2(tmax1)+u3(tmax1), включая доли постоянного напряжения, составляет Σui(tmax1)=1+1+1-0,5+1-0,5=3.

Как доказано ниже, это относится также к каждому другому моменту t. Для системы трехфазного тока и ωt=2πf справедливо:

Σui(t)=3+u1(t)+u2(t)+u3(t)=3+cos(ωt)+cos(ωt-2π/3)+cos(ωt+2π/3).

При cos(ωt+2π/3)=cosωtcos2π/3-sinωtsin2π/3 и cos(ωt-2π/3)=cosωtcos2π/3+sinωtsin2π/3 следует:

cos(ωt-2π/3)=+cos(ωt-2π/3)=2cosωtcos2π/3.

При cos2π/3=-1/2 из этого следует:

cos(ωt-2π/3)=+cos(ωt+2π/3)=-2/2cosωt=-cosωt.

Таким образом:

Σui(t)=3+u1(t)+u2(t)+u3(t)=3+cos(ωt)+cos(ωt-2π/3)+cos(ωt+2π/3)=3.

При сдвинутой на 120° характеристике синусоидальных переменных долей трех частичных напряжений u1(t), u2(t), u3(t) переменные доли, следовательно, взаимно точно уничтожаются. Это относится, как правило, к системам с n-м числом фаз, разность которых между соседними фазами составляет 2 π/n. В режиме инвертора постоянное напряжение UDC может быть без остатка разделено на n-e число синусоидальных частичных напряжений с эквидистантной разностью фаз 2π/n.

То же справедливо также в случае обратного направления передачи мощности, т.е. в режиме выпрямителя. При n-фазном запитывании из многофазного трансформатора 20 синусоидальными частичными напряжениями U21 с эквидистантной разностью фаз 2π/n к последовательной схеме 43 из ММС-модулей 30 в каждый момент приложено общее напряжение Σui(t)=n, которое складывается из суммы постоянных долей n-го числа частичных напряжений.

Если емкость развязывающего конденсатора 16 выбирается достаточно большой, то можно достичь того, что при номинальной нагрузке трансформатора 20 разность от деления эффективного значения падения напряжения U21 на одной из последовательных схем 17 на эффективное значения падения напряжения U16 на развязывающем конденсаторе 16 последовательной схемы 17 будет больше 6 или 10, особенно предпочтительно больше 20.

В качестве альтернативы или дополнительно падение напряжения U16 в режиме инвертора по его воздействию на величину исходного напряжения U22 можно компенсировать путем уменьшения числа обмоток первичной обмотки 21 и/или увеличения числа обмоток вторичной обмотки 22. Во избежание возрастания исходного напряжения U22 вследствие меньшего падения напряжения U16 в режиме частичной нагрузки и/или холостого хода можно в таком режиме согласовать амплитуду переменных долей частичных напряжений u1(t), u2(t), u3(t) посредством блока управления 14 так, чтобы (выработанное преобразователем) исходное напряжение U22 в значительной степени не зависело от нагрузки. С помощью любой из названных мер можно в режиме инвертора уменьшить расходы и потребность в конструктивном пространстве для развязывающего конденсатора 16.

В режиме выпрямителя падение напряжения U16 по его воздействию на величину исходного напряжения UDC можно в качестве альтернативы или дополнительно компенсировать путем увеличения числа обмоток первичной обмотки 21 и/или уменьшения числа обмоток вторичной обмотки 22. Во избежание возрастания (выработанного преобразовательной схемой 12) исходного напряжения UDC вследствие меньшего падения напряжения U16 в режиме частичной нагрузки и/или холостого хода можно в таком режиме согласовать амплитуду переменных долей частичных напряжений u1(t), u2(t), u3(t) посредством блока управления 14 так, чтобы (выработанное преобразовательной схемой 12) исходное напряжение UDC в значительной степени не зависело от нагрузки. С помощью любой из названных мер можно в режиме выпрямителя уменьшить расходы и потребность в конструктивном пространстве для развязывающего конденсатора 16.

На фиг. 5 изображен второй вариант выполнения преобразователя 10. Отличие от первого варианта заключается в том, что каждые два подводящих провода a″, b′ (или а′″, b″) к схемотехнически соседним последовательным схемам 17 объединены в один общий подводящий провод. За счет этого токи через схемотехнически соседние последовательные схемы 17 могут временно, по меньшей мере, частично компенсироваться на своем общем подающем проводе. Это уменьшает поля рассеяния и омические потери. Для общих подводящих проводов можно выбрать меньшее общее сечение.

Кроме того, во втором примере вторичная сторона 22s трансформатора 20 соединена в треугольник. Второй пример может быть видоизменен таким образом, чтобы вторичная сторона 22s трансформатора 20 была соединена в звезду.

На фиг. 6 изображена блок-схема способа эксплуатации 100 для преобразования постоянного напряжения UDC, по меньшей мере, в трехфазное переменное напряжение U22, , . При этом на первом этапе 110 к последовательной схеме 12 из ММС-модулей 30 прикладывается постоянное напряжение UDC. На втором этапе 120 ММС-модули 30 для вырабатывания и приложения нескольких сдвинутых по фазе напряжений u1(t), u2(t), u3(t) к их выводам a, b управляются со сдвигом по фазе. На третьем этапе 130 сдвинутые по фазе напряжения U21 прикладываются к обмоткам 21 первой стороны 21s многофазного трансформатора 20 посредством развязывающих конденсаторов 16.

На фиг. 7 изображена блок-схема способа эксплуатации 200 для преобразования, по меньшей мере, трехфазного переменного напряжения U22, , в постоянное напряжение UDC. При этом на первом этапе 210 ко второй стороне 22s трансформатора 20 прикладывается, по меньшей мере, трехфазное переменное напряжение U22, , . На втором этапе 220 на обмотках 21 первой стороны 21s многофазного трансформатора 20 посредством развязывающих конденсаторов 16 отбираются, по меньшей мере, трехфазные напряжения U21, , . На третьем этапе 230 последовательно включенные ММС-модули 30 для вырабатывания и приложения нескольких сдвинутых по фазе напряжений u1(t), u2(t), u3(t) к их выводам a, b управляются со сдвигом по фазе.

Как в режиме на фиг. 6, так и в режиме на фиг. 7 каждый из подмодулей 40 содержит полумост 43 и емкость 44, включенную параллельно ему, причем каждая ветвь 41z, 42z каждого полумоста 43 содержит полупроводниковый выключатель 41, 42.


ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ЭКСПЛУАТАЦИИ ДЛЯ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 431-440 из 1 427.
10.09.2015
№216.013.7890

Электродуговая камера для распределительного устройства

Изобретение относится к электротехнике и может быть использовано в компактном распределительном устройстве с электродуговой камерой, которое, в частности, может быть применено на подводных судах. Технический результат состоит в повышении надежности. Полый модуль (1) для приема коммутационных...
Тип: Изобретение
Номер охранного документа: 0002562453
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.78a8

Способ и устройство управления для определения длины, по меньшей мере, одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины, по меньшей мере, одного участка пути, регистрации сообщений о прохождении, вызванных...
Тип: Изобретение
Номер охранного документа: 0002562477
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7900

Способ охлаждения листового металла на участке охлаждения прокатного стана, участок охлаждения прокатного стана и устройство управления охлаждением на участке охлаждения прокатного стана

Изобретение относится к области металлургии, в частности к охлаждению толстолистовой стали в линии прокатного стана. Для обеспечения ровности толстолистовой стали при одновременной высокой производительности прокатного стана осуществляют охлаждение листового металла (В) на участке (1)...
Тип: Изобретение
Номер охранного документа: 0002562565
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7940

Устройство для осаждения ферромагнитных частиц из суспензии

Изобретение касается устройства для осаждения ферромагнитных частиц из суспензии. Устройство включает в себя вертикально ориентированный трубчатый реактор, через который может протекать суспензия, у которого имеется, если смотреть в направлении протекания, первая область и вторая область и...
Тип: Изобретение
Номер охранного документа: 0002562629
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.795b

Сплав, защитное покрытие и конструкционная деталь

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по...
Тип: Изобретение
Номер охранного документа: 0002562656
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7975

Турбина, включающая систему клапанов уплотнительного воздуха

Изобретение относится к энергетике. Турбина, содержащая ротор, гидродинамический подшипник для опоры с возможностью вращения ротора, систему подающих воздух каналов для подачи воздуха к гидродинамическому подшипнику, систему отводных каналов для отвода части подаваемого воздуха; систему...
Тип: Изобретение
Номер охранного документа: 0002562682
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.797a

Крепление турбинной лопатки для турбомашины

Крепление турбинной лопатки содержит канавку для лопатки и хвостовик лопатки, расположенный в канавке. Хвостовик лопатки имеет расположенную на стороне конца в направлении оси вращения ротора вершину хвостовика лопатки. Хвостовик лопатки содержит крепежные зубцы для введения в соответствующие...
Тип: Изобретение
Номер охранного документа: 0002562687
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79ef

Дугогасительная камера для силового выключателя, а также силовой выключатель с дугогасительной камерой

Дугогасительная камера для силового выключателя имеет первое и второе арматурные тела (1, 2), которые относительно продольной оси (3) камеры прилегают, каждое, на стороне конца к электрически изоляционному участку (8), который имеет по меньшей мере два чашевидных частичных участка...
Тип: Изобретение
Номер охранного документа: 0002562804
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79fa

Рельсовое транспортное средство с перекрытой поворотной тележкой

Изобретение относится железнодорожному транспорту. В рельсовом транспортном средстве, боковая поверхность которого в районе пола вырезана для размещения поворотной тележки с по меньшей мере боковыми перекрывающими элементами (VL), имитирующими движение поворотной тележки, между кузовом (W) и...
Тип: Изобретение
Номер охранного документа: 0002562815
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a4f

Горелка

Горелка выполнена с топливораспределительным кольцом, некоторым количеством топливных форсунок, смонтированных в направлении потока на топливораспределительном кольце, имеющем в направлении потока кольцеобразную поверхность. Топливораспределительное кольцо имеет обращенную к середине кольца...
Тип: Изобретение
Номер охранного документа: 0002562900
Дата охранного документа: 10.09.2015
Показаны записи 431-440 из 944.
10.08.2015
№216.013.6b63

Модульная система шкафов преобразователя тока

Изобретение касается модульной системы шкафов преобразователя тока, снабженного по меньшей мере одним модулем (1, 3, 5) фазы, имеющим один верхний и один нижний вентиль (T1, … T6) преобразователя тока, при этом каждый вентиль (T1, … T6) преобразователя тока имеет по меньшей мере две ячейки (2)...
Тип: Изобретение
Номер охранного документа: 0002559049
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b9d

Устройство для регулирования регулируемых направляющих лопаток

Устройство (3) для регулирования регулируемых направляющих лопаток (10, 11) компрессора газотурбинного двигателя с осевым потоком содержит управляющий стержень (50) для регулирования углового положения лопаток (10, 11) и вращающийся вал (61), с которым шарнирно соединен управляющий стержень...
Тип: Изобретение
Номер охранного документа: 0002559107
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c02

Вспомогательный парогенератор в качестве дополнительного средства регулирования частоты или средства первичного и/или вторичного регулирования в пароэлектростанции

Изобретение относится к энергетике. Способ электрического повышения мощности пароэлектростанции с водопаровым контуром и расположенной в нем, состоящей из нескольких частей турбиной в электросеть. Пароэлектростанция содержит вспомогательный парогенератор, посредством которого потребители...
Тип: Изобретение
Номер охранного документа: 0002559208
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d1f

Очистка загрязнённого внесением оксидов серы растворителя на основе амина

Изобретение относится к способу и устройству для очистки загрязненного внесением диоксидов серы растворителя на основе амина. В загрязненный растворитель вводят соединение калия и окислитель, в результате чего сульфит окисляется в сульфат, при этом окислитель и соединение калия смешивают между...
Тип: Изобретение
Номер охранного документа: 0002559493
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e2a

Способ коммутации фазы выпрямителя тока с биполярными транзисторами с изолированным затвором (igbt) с обратной проводимостью

Изобретение относится к способу коммутации от работающего в диодном режиме биполярного транзистора с изолированным затвором (IGBT) (Т1) с обратной проводимостью на работающий в IGBT-режиме IGBT (Т2) с обратной проводимостью. Технический результат заключается в обеспечении наименьшей...
Тип: Изобретение
Номер охранного документа: 0002559760
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6ee3

Ротор турбомашины и способ его сборки

Ротор турбомашины содержит вращающийся элемент с установленной на нем лопаткой. Лопатка содержит хвостовик с выступающей структурой, формирующей стопорную поверхность, поддерживающую установленный хвостовик относительно вращающегося элемента под действием силы, направленной радиально внутрь....
Тип: Изобретение
Номер охранного документа: 0002559957
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f91

Выхлопной диффузор газовой турбины

Выхлопной диффузор (10) для газовой турбины имеет расширяющийся в направлении выхода (20) диффузора проточный канал (22), в центре которого предусмотрен распространяющийся в осевом направлении направляющий аппарат (14). Направляющий аппарат 14 по меньшей мере на одном осевом участке своей...
Тип: Изобретение
Номер охранного документа: 0002560131
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fe1

Способ и устройство управления для определения длины по меньшей мере одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины по меньшей мере одного участка пути, регистрации сообщений о прохождении, вызванных прохождением...
Тип: Изобретение
Номер охранного документа: 0002560211
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72d9

Система, включающая в себя уплотнение вала

Изобретение касается уплотнения вала, которое включает в себя более одного уплотнительного модуля, по меньшей мере один подвод жидкости и один отвод жидкости, снабженной главным уплотнением, на которое приходится наибольшая часть разности давлений. Второе главное уплотнение выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002560971
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7383

Динамоэлектрическая машина с воздушно-водяным охлаждением

Изобретение относится к электротехнике, к охлаждению динамоэлектрических машин. Технический результат состоит в улучшении охлаждения. Ветрогенератор содержит выполненный в виде листового пакета статор (1) с системой обмотки, образующей на торцах статора (1) лобовые части (16) обмотки....
Тип: Изобретение
Номер охранного документа: 0002561146
Дата охранного документа: 27.08.2015
+ добавить свой РИД