×
13.01.2017
217.015.793c

Результат интеллектуальной деятельности: ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию. Предложена конструкция планарного преобразователя ионизирующих излучений, содержащая слаболегированную полупроводниковую пластину n (p) типа проводимости, в которой расположена сильнолегированная n (p) область, на поверхности которой расположен электропроводящий электрод катода (анода), на верхней поверхности пластины расположена сильнолегированная p (n) область, образующая с полупроводниковой пластиной p-n-переход, на поверхности p (n) области расположен слой изолирующего диэлектрика и электропроводящий электрод анода (катода), являющийся радиоактивным изотопом, при этом на верхней и нижней поверхностях слаболегированной полупроводниковой пластины n (p) типа проводимости расположены сильнолегированные соответственно верхняя и нижняя горизонтальные p (n) области, образующие с пластиной p-n-переходы p-i-n-диода, при этом они соединены между собой вертикальной р (n) кольцевой областью, при этом верхняя горизонтальная p (n) область образует со слоем изолирующего диэлектрика и электропроводящим электродом катода (анода) МОП структуру накопительного конденсатора, на верхней поверхности пластины также расположена n (p) контактная область к пластине n (p) типа проводимости, на верхней и нижней поверхности горизонтальных p (n) областей расположены соответственно слои верхнего и нижнего диэлектрика, содержащие контактные окна соответственно к n (p) контактной области и нижней горизонтальной p (n) области, на поверхности верхнего и нижнего диэлектриков расположены соответственно верхний и нижний слои радиоактивного изотопа - металла, образующие омические контакты соответственно с n (p) контактной областью и нижней горизонтальной p (n) областью, являющиеся электродами катода (анода) и анода (катода) соответственно p-i-n-диода. Также предложен способ создания конструкции планарного преобразователя ионизирующих излучений. Изобретение обеспечивает возможность создания планарного преобразователя - бета-батарейки с повышенной мощностью и энергоемкостью на единицу объема по сравнению с традиционной конструкцией p-i-n-диода. 2 н.п. ф-лы, 5 ил., 1 табл.

Настоящее изобретение относится к области преобразователей энергии ионизирующих излучений в электрическую энергию (ЭДС).

Известны конструкции планарных 2D преобразователей ионизирующих радиационных излучений в электрическую энергию (бета-гальваническая батарейка), которые впервые предложил Раппопорт в 1954 году [1. Rappaport P. The Electron-Voltaic Effect in p-n Junctions Induced by Beta-Particle Bombardment / P. Rappaport // Phys. Rev. 1954. V. 93. P. 246; 2. Rappaport P. Radioactive battery employing intrinsic semiconductor / P. Rappaport // US Patent 5,973. 1956] после обнаружения им того, что при распаде изотопов, например 63Ni или трития, могут образовываться в полупроводниковых материалах электронно-дырочные пары, это явление получило название бета-вольтаического эффекта. Позднее в 1957 году Elgin-Kidde впервые применили бета-вольтаический эффект для выработки электрической энергии с помощью планарных p-n-переходов, полученных на кремниевых пластинах [3. "Miniature Atomic Powered Battery", Radio and TV News, V. 57. May. 1957. Р. 160].

С 1989 года для создания преобразователя - бета-вольтаической батареи - стали исследоваться и применяться другие - широкозонные материалы GaN, GaP, AlGaAs, SiC вследствие их более высокой температурной стойкости [4. Chandrashekhar M.V.S., Thomas Ch.I.; Li H., Spencer M.G.; Lal A. Demonstration of a 4H SiC Betavoltaic Cell // Applied Physics Letters. V. 88. №3. 2006. P. 033506. 1-3; 5. Cheng Z., Zhao Z., San H.; Chen X. Demonstration of a GaN betavoltaic microbattery // Nano/Micro Engineered and Molecular Systems (NEMS). 2011. IEEE International Conference. P. 1036-1039].

Однако при создании трехмерных (3D) конструкций технологии, использующие широкозонные материалы, уступают в производительности и эффективности кремниевой технологии. В частности, глубина микроканалов в кремнии в разы больше, чем в карбиде кремния и других материалах. Степень дефектообразования при формировании микроканалов также минимальная в кремниевой технологии. Более того именно в кремниевой технологии наиболее просто и экономично совместить в одной конструкции набор двумерных элементов. Таким образом, технология, использующая кремниевые пластины, является наиболее эффективной с точки зрения минимизации объема и веса преобразователя, приходящегося на единицу вырабатываемой электроэнергии в трехмерных конструкциях.

Поэтому с 2004 года появилось множество работ, посвященных созданию трехмерных «объемных» конструкций 3D преобразователей, в основном на монокремнии, нацеленных на оптимизацию соотношения веса преобразователя к вырабатываемой энергии [6. Долгий А.Л. Бета-преобразователи энергии на основе макропористого кремния // 4-ая Международная научная конференция «Материалы и структуры современной электроники», 23-24 сентября 2010 г., Минск, Беларусь. С. 57-60; 7. Sun W., Hirschman K.D., Gadeken L.L. and Fauchet P.M. Betavoltaic and photovoltaic energy conversion in three-dimensional macroporous silicon diodes // Physica status solidi (a). 2007. V. 204. № 5. P. 1536-1540; 8. Sun W., Kherani N.P., Hirschman K.D., Gadeken L.L. and Fauchet P.M. A Three-Dimensional Porous Silicon p-n Diode for Betavoltaics and Photovoltaics // Advanced Materials. 2005. V. 17. № 10. P. 1230-1233; 9. Gadeken L.L., Engel P.S., Laverdure K.S. Apparatus for generating electrical current from radioactive material and method of making same. USA Patent. US 20080199736 A1. Pub. date: 21.08.2008. 10. Chandrashekhar M.V.S, Thomas Ch.I., Spencer M.G. Betavoltaic cell. USA Patent. US 7939986B2. Pub. date: 10.05.2011]. Такие конструкции позволяют получить развитую поверхность щелей или каналов кремниевых пластин с оптимальными размерами квазинейтральных областей и областей пространственного заряда p-i-n-диодов, в которых генерируются бета-излучением носители заряда. Однако создание бета-батареек с такой конструкцией представляет сложную и нерешенную технологическую проблему, прежде всего из-за низкого качества р-n-переходов в каналах или щелях кремниевых пластин, что приводит к недопустимо большим токам утечки через них.

В последнее время появились технологии утонения кремниевых пластин до разменов 40-100 микрон, что соизмеримо с глубиной проникновения в кремний (20 мкм) бета-излучения радиоактивных изотопов, таких как никель-63 и тритий, что принципиально позволяет создавать планарные "тонкие" конструкции кремниевых p-i-n-диодов с близкими к оптимальным размерами квазинейтральных областей и областей пространственного заряда (10-29 мкм) [11. Park S.М., Ahn J.Н., Kim S.I. and Lee N.-E. NO-Induced Fast Chemical Dry Thinning of Si Wafer in NF3 Remote Plasmas // Journal of the Korean Physical Society. V. 54. №3. March 2009. P. 1127-1130]. Однако и «тонкие» планарные конструкции преобразователей на основе p-i-n-диодов [4. Chandrashekhar M.V.S., Thomas Ch.I; Li H., Spencer M.G.; Lal A. Demonstration of a 4H SiC Betavoltaic Cell // Applied Physics Letters. V. 88. №3. 2006. P. 033506. 1-3; 5. Cheng Z, Zhao Z., San H.; Chen X. Demonstration of a GaN betavoltaic microbattery // Nano/Micro Engineered and Molecular Systems (NEMS). 2011. IEEE International Conference. P. 1036-1039; 12. Guo H., Zhang K., Zhang Yu., Zhang Yu., Han Ch., Shi Ya. I-layer vanadium-doped pin type nuclear battery and the preparation process thereof. USA Patent US 20140225472 A1. Pub. date: 14.08.2014 г.] не обладают максимально возможной эффективностью, поскольку в них сбор носителей заряда от излучения имеет односторонний характер (только сверху) со стороны расположения поверхностного р-n перехода.

Известна планарная 2D конструкция полупроводниковых вольтаических преобразователей радиационных бета-излучений в электрическую энергию [12. Guo Н., Zhang K., Zhang Yu., Zhang Yu., Han Ch., Shi Ya. I-layer vanadium-doped pin type nuclear battery and the preparation process thereof. USA Patent US 20140225472 A1. Pub. date: 14.08.2014 г.] (фиг. 1), взятая за прототип и содержащая слаболегированную полупроводниковую пластину n (р) типа проводимости, в которой расположена сильнолегированная n++) область, на поверхности которой расположен электропроводящий электрод катода (анода), на верхней поверхности пластины расположена сильнолегированная р+ (n+) область, образующая с полупроводниковой пластиной p-n-переход, на поверхности р+ (n+) области расположен слой изолирующего диэлектрика и электропроводящий электрод анода (катода), являющийся радиоактивным изотопом.

Способ ее изготовления, планарной конструкции, состоящий в формировании эпитаксиальным наращиванием на поверхности полупроводниковой подложки n (р) типа проводимости слоев n--)типа и р+ (n+)типа проводимости, осаждении на поверхность слоя р+ (n+) типа проводимости радиоактивного изотопа 63Ni, формировании электрода катода (анода), образующего омический контакт к подложке n--) типа проводимости, и формировании электрода анода (катода), образующего омический контакт к слою р+ (n+)типа проводимости, изоляции планарной поверхности слоев оксидом кремния.

Общим недостатком аналогов и прототипа является невозможность достичь наилучших соотношений размеров (веса) преобразователя к выделяемой мощности ЭДС.

Техническим результатом изобретения является создание конструкции планарного преобразователя - бета-батарейки с значительно большей (в два раза) генерируемой электрической энергией (мощности), приходящейся на единицу его объема (веса) и более высокой энергоемкостью.

Технический результат достигается путем создания новой функционально-интегрированной конструкции p-i-n-диода и МОП-конденсатора планарного преобразователя, состоящей из слаболегированной полупроводниковой пластины n (р) типа проводимости, в которой расположены сильнолегированные соответственно верхняя и нижняя горизонтальные р+ (n+) области, образующие с пластиной p-n-переходы p-i-n-диода, при этом они соединены между собой вертикальной р+ (n+) кольцевой (замкнутой) областью, на верхней поверхности пластины также расположена n++) контактная область к пластине n--) типа проводимости, на верхней и нижней поверхностях горизонтальных р+(n+) областях расположены соответственно слои верхнего и нижнего диэлектрика, содержащие контактные окна соответственно к n++) контактной области и нижней горизонтальной р+ (n+) области, на поверхности верхнего и нижнего диэлектриков расположены соответственно верхний и нижний слои радиоактивного изотопа металла, образующие омические контакты соответственно с n++) контактной областью и нижней горизонтальной р+ (n+) областью, являющиеся электродами катода (анода) и анода (катода) соответственно p-i-n-диода, при этом верхняя горизонтальная р+ (n+) область образует со слоем изолирующего диэлектрика и электропроводящим электродом катода (анода) МОП структуру накопительного конденсатора.

Способом изготовления, состоящим в создании вертикальной кольцевой р+ (n+) области путем проведения первой фотолитографии, травлении в пластине глубокой кольцевой щели и диффузии в ее поверхность примеси р+ (n+) типа, создании верхней горизонтальной р+ (n+) области путем проведения второй фотолитографии по верхней поверхности пластины и имплантации акцепторной (донорной) примеси в ее верхнюю и нижнюю поверхность и последующего температурного отжига радиационных дефектов, формировании n++) контактной области путем проведения третьей фотолитографии по верхней поверхности пластины и имплантации в нее донорной (акцепторной) примеси и последующего температурного отжига радиационных дефектов, нанесении на верхнюю и нижнюю поверхность пластины слоев нижнего и верхнего слоев диэлектрика, проведении четвертой и пятой фотолитографий, вскрытии контактных окон соответственно к верхней n++) контактной области и нижней р+ (n+) области, осаждении нижнего и верхнего слоев радиоактивного изотопа металла на верхнюю и нижнюю поверхность пластины, а также резке пластины на чипы.

Изобретение поясняется приведенными чертежами:

Конструкция прототипа показана на фиг. 1, где а - структура, б - топология.

Здесь 1 - полупроводниковая пластина n (р) типа проводимости, 2 - n++) сильнолегированный контактный слой, 3 - р(n) область р-n-перехода, 4 - материал радиоактивного изотопа, 5 - диэлектрик (оксид кремния), 6 - электрод анода, 7 - электрод катода.

Конструкция преобразователя по изобретению показана фиг. 2, где а - структура, б - топология, в - эквивалентная электрическая схема.

В конструкции имеется полупроводниковая пластина n (р) типа проводимости - 1, на верхней и нижней поверхности которой расположены сильнолегированные соответственно верхняя - 8 и нижняя - 9 горизонтальные р+ (n+) области, к ним примыкает вертикальная р+ (n+) кольцевая область - 10, на верхней поверхности пластины также расположена n++) контактная область - 11, на поверхности горизонтальных р+(n+) областей - 8 и 9 расположены соответственно слои верхнего - 12 и нижнего - 13 диэлектрика, на их поверхности расположены соответственно верхний - 14 и нижний - 15 слои радиоактивного изотопа - металла. При этом область катода - 14, верхняя горизонтальная область р+(n+) - 8 и область диэлектрика - 12 образуют накопительный МОП конденсатор.

Технология изготовления преобразователя по изобретению показана на фиг. 3 и состоит из следующей последовательности технологических операций:

а) - термическое окисление кремниевых пластин КЭФ 5 кΩ·см с ориентацией (100);

- проводят 1-ую фотолитографию и травление пластин по границам чипов;

- проводят формирование вертикального р+ слоя путем «глубокой» диффузии бора вплоть до смыкания верхнего и нижнего фронтов;

б) - проводят 2-ую фотолитографию и формируют ионным легированием бора дозой D=10 мкКл энергией Е=20 кэВ р+ верхнюю горизонтальную область и р+ нижнюю горизонтальную область;

в) - проводят 3-ую фотолитографию и формируют n+ контактный слой ионным легированием фосфора дозой D=300 мкКл с энергией Е=40 кэВ;

- проводят термический отжиг радиационных дефектов при температуре Т=900°С в течение t=40 минут;

г) - проводят термическое окисление поверхности пластин при температуре Т=860°С в течение 20 минут на толщину оксида SiO2=35 нм;

- проводят 4-ую и 5-ую фотолитографии контактных окон к верхней n+ контактной области и нижней горизонтальной р+ области;

д) - осаждают радиоактивный изотоп - 63Ni;

е) - режут пластины на чипы (кристаллы).

Пример практической реализации конструкции.

Предлагаемый преобразователь может быть реализован на пластинах кремния КЭФ 5 кΩ·см с ориентацией (100) по технологии, представленной на фиг. 3. При этом в качестве изотопного источника может быть выбран 63Ni, имеющий большой период времени полураспада (100,1 лет) и испускающий электронное излучение со средней энергией 17 кэВ и максимальной энергией 64 кэВ, практически безопасный для здоровья человека. Такая энергия электронов меньше энергии дефектообразования в кремнии (160 кэВ). При этом глубина поглощения в кремнии электронов со средней энергией 17 кэВ составляет примерно 3.0 мкм, а для 90% поглощения - 12 мкм. Данные размеры должны соответствовать глубинам залегания p-n-переходов и величине ОПЗ, что достигается на типовых кремниевых структурах. Следует, отметить, что в качестве радиоактивного изотопа могут быть использованы иные материалы, например, твердотельный источник трития и т.д.

По данной технологии изготовлены на кремниевых кристаллах площадью 1 см2 тестовые образцы бета-батареек с параметрами, лучшими, чем у известных аналогов. При активности источника 63Ni 2,7 мКи, получено значение напряжения холостого хода (Uxx) более 0,1 В и тока короткого (Iкз) замыкания более 25 нА.

По разработанной технологии были получены планарные односторонние макеты преобразователя с характеристиками, приведенными в таблице 1.

На образцах 1, 2 присутствовал тонкий слой Al (400 ангстрем) над рабочей р-областью, образцы 3, 4 имели контакт только на периферии рабочей области.

На образцах 2 и 4 применялся геттерирующий отжиг с охлаждением с 900°С до 600°С со скоростью 1°С/мин.

Типичная ВАХ под облучением радиоизотопа Ni-63 с активностью 2,7 мКи представлена на фиг 4.

Принцип действия преобразователя основан на ионизации полупроводникового материала, например кремния, бета-излучением изотопов (никеля, стронция, кобальта и т.д.). Образующиеся при этом электронно-дырочные пары разделяются полем p-n-перехода в области пространственного заряда (ОПЗ) и создают разность потенциалов на р+ и n+ областях преобразователя (бета-гальваническую ЭДС). При этом часть электронно-дырочных пар может быть собрана полем р-n перехода также в квазинейтральной области (КНО) на расстоянии, равном диффузионной длине носителя заряда. Генерируемый p-n-переходами ионизационный заряд собирается накопительным МОП конденсатором.

Технические преимущества изобретения

- конструкция бета-батарейки позволяет получить практически в два раза большую мощность, по сравнению с обычным p-i-n диодом (размеры n+ контактной области много меньше размеров р+ горизонтальных областей и ее вкладом можно пренебречь);

- при этом генерируемая энергия накапливается внутри бета-батарейки, что во многих случаях исключает необходимость применения внешних аккумуляторов и конденсаторов;

- при производстве бета-батарейки преобразователя ионизирующих излучений используется микроэлектронная технология;

- конструкция «высоковольтной» батареи собирается из элементарных батареек путем их склеивания электропроводящим клеем (фиг. 5, а - сборка (разрез структуры), фиг. 5, б - электрическая схема «высоковольтной» батареи);

- современные технологии изготовления пластин позволяют провести утонение пластин кремния до оптимальных размеров Н=40 мкм, соответствующих глубине поглощения бета-излучения в кремнии, что позволяет получать максимальную мощность излучения и, соответственно, ЭДС на единицу объема (веса) преобразователя;

- такой источник ЭДС обеспечит прямую зарядку (конденсатора) аккумулятора при отсутствии солнечных батарей при минимальном ее весе и размерах, что важно, например, для применения в беспилотных летательных аппаратах, взрывоопасных помещениях - шахтах, ночных индикаторах, расположенных в труднодоступных местах, электростимуляторах сердца и т.д.;

- важным обстоятельством является также то, что срок службы такого преобразователя определяется периодом полураспада радиоактивного материала, который для 63Ni составляет 100,1 лет, что более чем достаточно в большинстве применений.


ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
ПЛАНАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 333.
10.02.2015
№216.013.23d2

Способ формирования высококачественных гетероструктур светоизлучающих диодов

Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) на основе гетероструктур соединений AB. Способ включает операцию облучения пластин с гетероструктурами интегральным потоком...
Тип: Изобретение
Номер охранного документа: 0002540623
Дата охранного документа: 10.02.2015
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
Показаны записи 11-20 из 190.
10.02.2015
№216.013.23d2

Способ формирования высококачественных гетероструктур светоизлучающих диодов

Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) на основе гетероструктур соединений AB. Способ включает операцию облучения пластин с гетероструктурами интегральным потоком...
Тип: Изобретение
Номер охранного документа: 0002540623
Дата охранного документа: 10.02.2015
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
+ добавить свой РИД