×
13.01.2017
217.015.7861

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц размещают в растровом электронном микроскопе, вакуумируют микроскоп до состояния глубокого вакуума, задают увеличение сканирования, достаточное для визуализации наночастиц, осуществляют сканирование покрытия по касательной к подложке электронным пучком максимально допустимой энергии при постепенном увеличении силы тока до отрыва наночастицы от покрытия, а о прочности покрытия судят по величине силы тока, при которой происходит отрыв наночастицы от покрытия. Технический результат: обеспечение возможности определения прочности покрытия из керамических наночастиц. 2 з.п. ф-лы, 4 ил.

Изобретение относится к испытательной технике и может быть использовано при определении прочности покрытия из керамических наночастиц.

В настоящее время в микроэлектронике актуальной задачей является повышение эффективности охлаждения с помощью микроканалов при высокой плотности теплового потока. Одним из наиболее перспективных методов интенсификации теплообмена в микроканале является создание покрытия из керамических наночастиц толщиной от долей микрона до нескольких микрон на его поверхности, что позволяет повысить надежность и эффективность микроканальных теплообменников.

При исследовании кипения воды в микроканале с покрытием из керамических наночастиц обнаружен рост критической тепловой нагрузки до 50% по сравнению с каналом без покрытия [Yu. Kuzma-Kichta, A. Leontyev, A. Lavrikov, M. Shustov, K. Suzuki. «Boiling investigation in the microchannel with nanoparticles coating», Proceedings of the 15th International Heat Transfer Conference, IHTC-15, 10-15 August, 2014, Kyoto, Japan]. Эксперименты показывают, что эффект повышения теплоотдачи при кипении на поверхности с керамическим нанопокрытием сохраняется в течение двух месяцев. Для оценки срока службы покрытия из керамических наночастиц на поверхности микроканала требуется оценить его прочность.

Известен способ контроля адгезии материала пленочного покрытия на подложке, заключающийся в том, что на пленочное покрытие контролируемого изделия и эталонного образца воздействуют одинаковыми импульсами лазерного излучения с длительностью, не приводящей к его отслаиванию, и плотностью потока мощности, не приводящей к его плавлению. О качестве адгезии пленочного покрытия судят по отношению площади его участков, температура которых больше, чем у пленочного покрытия эталонного образца, к площади всего покрытия контролируемого изделия [Авторское свидетельство СССР №1732238, G01N 19/04, 1992]. Однако данным способом определить адгезию покрытий из керамических наночастиц не представляется возможным, поскольку при воздействии импульсами лазерного излучения происходит их спекание и охрупчивание.

Существует ГОСТ Р 54473-2011 «Нанопокрытия режущего инструмента на основе алмаза и кубического нитрида бора. Общие технические требования и методы испытаний», где адгезию контролируют адгезиометром или Роквелл-тестом на тест-образце или на нерабочей части изделия. Однако метод согласно данному ГОСТу не может быть применен для определения адгезии покрытий из керамических наночастиц в микроканалах, имеющих вид не пленки, а неоднородной структуры.

Из предшествующего уровня техники авторами не выявлен ближайший аналог (прототип), поскольку ни одно из приведенных выше известных технических решений не позволяет определить не только адгезию, но и когезию покрытия из керамических наночастиц, для оценки срока его службы в том числе и на поверхности микроканала.

Задачей, на решение которой направлено данное изобретение, является разработка способа определения прочности покрытий из керамических наночастиц.

Поставленная задача решается в способе определения прочности покрытия из керамических наночастиц, заключающемся в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц размещают в растровом электронном микроскопе, вакуумируют микроскоп до состояния глубокого вакуума, задают увеличение сканирования, достаточное для визуализации наночастиц, осуществляют сканирование покрытия по касательной к подложке электронным пучком максимально допустимой энергии при постепенном увеличении силы тока электронного пучка до отрыва наночастицы от покрытия, а о прочности покрытия судят по величине силы тока, при которой происходит отрыв наночастицы от покрытия.

Сканирование покрытия из керамических наночастиц электронным пучком необходимо осуществлять по касательной к подложке, для того чтобы убедиться в исчезновении наночастиц из поля зрения и достоверности их отрыва от подложки.

Прочность покрытия из керамических наночастиц можно определить в соответствии с законом Кулона по формуле:

,

где k - коэффициент пропорциональности в законе Кулона, равный 9·109 H·м2/Кл2;

q0 - остаточный заряд на наночастице после первого прохождения электронного пучка с минимальным значением силы тока;

q - заряд электронного пучка, при котором происходит отрыв наночастицы от покрытия;

r - расстояние рассеивания электронного пучка от заряженной наночастицы, примерно равное 10-5 м;

i0 - минимальное значение силы тока при сканировании;

i - сила тока электронного пучка, при которой происходит отрыв наночастицы от покрытия;

d - диаметр сканируемой наночастицы;

ν - скорость движения электронного пучка,

для чего в процессе сканирования определяют скорость движения электронного пучка и диаметр сканируемой наночастицы.

Минимальное значение силы тока электронного пучка, при котором начинают сканирование, может быть выбрано в диапазоне 10-10÷10-8 A, поскольку в данном диапазоне визуализация наночастиц оптимальна и диаметр электронного пучка сравним с диаметром сканируемых наночастиц.

Таким образом, как показали эксперименты, на поверхности покрытий из керамических наночастиц, сформированных на подложке, в процессе сканирования в электронном микроскопе в условиях глубокого вакуума с помощью электронного пучка максимально допустимой энергии и с минимальной силой тока возникает остаточный заряд. В процессе сканирования силу тока электронного пучка поднимают до предельного значения, достаточного для отрыва наночастицы от покрытия с помощью кулоновской силы. Если значение силы тока электронного пучка меньше предельного, при котором происходит отрыв, то покрытие из наночастиц будет прочным, т.е. сохранится.

Сущность заявленного изобретения иллюстрируется фигурами графических изображений и поясняется нижеследующими примерами конкретного осуществления.

На фиг. 1 представлен снимок (увеличением 100.000 крат) сканированных керамических наночастиц по касательной к поверхности цилиндрической подложки электронным пучком с минимальной силой тока и выделена наночастица диаметром 55 нм в покрытии.

На фиг. 2 представлен снимок (увеличением 100.000 крат) с оторванной наночастицей при сканировании электронным пучком с увеличенной силой тока.

На фиг. 3 представлен снимок (увеличением 50.000 крат) сканированных керамических наночастиц по касательной к поверхности плоской подложки электронным пучком с минимальной силой тока и выделена наночастица диаметром 110 нм на подложке.

На фиг. 4 представлен снимок (увеличением 50.000 крат) с оторванной наночастицей при сканировании электронным пучком с увеличенной силой тока.

Пример 1

Покрытие из керамических наночастиц дисперсностью порядка 50 нм наносили на трубчатую металлическую подложку диаметром 1 мм длиной 20 мм. Подложку с покрытием размещали горизонтально в растровом электронном микроскопе. Вакуумировали микроскоп до давления порядка 10-2 Па. Устанавливали энергию электронного пучка 30 КэВ, его минимальную силу тока, измеренную в цилиндре Фарадея, порядка 5,1·10-10 A, его скорость движения порядка 11 мкм/с. Задавали увеличение сканирования 100.000 крат и осуществляли сканирование керамической наночастицы диаметром 55 нм по касательной к поверхности цилиндрической подложки электронным пучком (см. фиг. 1).

После каждого попадания электронного пучка на наночастицу постепенно увеличивали силу тока. Фиксировали значение силы тока, при котором происходит отрыв керамической наночастицы от покрытия, с помощью цилиндра Фарадея, которое составило 7,4·10-9 A (см. фиг. 2).

Оценили когезию покрытия из керамических наночастиц по величине энергии, необходимой для их отрыва, в соответствии с законом Кулона по формуле:

Пример 2

Покрытие из керамических наночастиц дисперсностью порядка 100 нм наносили на плоскую подложку длиной 30 мм шириной 15 мм. Подложку с покрытием размещали вертикально в растровом электронном микроскопе. Вакуумировали микроскоп до давления порядка 10-2 Па. Устанавливали энергию электронного пучка 30 КэВ, его минимальную силу тока, измеренную в цилиндре Фарадея, порядка 4,6·10-10 A, его скорость движения порядка 19 мкм/с. Задавали увеличение сканирования 50.000 крат и осуществляли сканирование керамической наночастицы диаметром 110 нм по касательной к поверхности подложки электронным пучком (см. фиг. 3).

После каждого попадания электронного пучка на наночастицу постепенно увеличивали силу тока. Фиксировали значение силы тока, при котором происходит отрыв керамической наночастицы от покрытия, с помощью цилиндра Фарадея, которое составило 3,1·10-8 A (см. фиг. 4).

Оценили адгезию покрытия из керамических наночастиц по величине энергии, необходимой для их отрыва, в соответствии с законом Кулона по формуле:

Таким образом, данное изобретение позволило с необходимой достоверностью определить прочность (адгезию и когезию) покрытия из керамических наночастиц для последующей оценки его срока службы на поверхности микроканала.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 79.
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
Показаны записи 51-60 из 67.
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
+ добавить свой РИД