×
13.01.2017
217.015.77cb

Результат интеллектуальной деятельности: ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок. Торцовое газодинамическое уплотнение опоры ротора турбомашины содержит невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, выполненное в виде уплотнительного разрезного кольца, установленного в канавке корпуса вместе с контактирующими с ним по торцам двумя дополнительными уплотнительными кольцами и промежуточным кольцом. Весь пакет вторичного уплотнения фиксируется разрезным упругим кольцом. Уплотнительное кольцо первичного уплотнения установлено в корпусе и фиксируется от проворота за счет наличия на его наружной поверхности выступа и фиксируется упругим разрезным кольцом от выпадания при монтаже из-за действия пружины. Это уплотнительное кольцо и контактирующее с ним с натягом по цилиндрической наружной поверхности уплотнительное разрезное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30. Причем уплотнительное разрезное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между этими уплотнительными кольцами обеспечивалась герметичность всех стыков на всех режимах работы турбомашины и отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой, а зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным. Изобретение повышает надежность уплотнения. 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок.

Известно торцовое уплотнение газовой турбины, установленное на валу ротора турбомашины, содержащее уплотнительное кольцо, установленное в корпусе и прижатое пружинами к вращающейся втулке, а также вторичное уплотнение в виде поршневого кольца, которое герметизирует соединение уплотнительного кольца и корпуса при их взаимных перемещениях (Уплотнения и уплотнительная техника: Справочник. / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общей редакцией А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с. С. 302, рис. 9.12). Данное уплотнение из-за применения поршневого чугунного кольца вместо традиционного вторичного уплотнения из резины можно применять при высоких температурах уплотняемой среды. Поршневое кольцо имеет поперечный разрез, наружный диаметр кольца выполняется диаметра корпуса, благодаря чему при установке кольца в результате его деформации на цилиндрической уплотняемой поверхности создается контактное давление (Уплотнения и уплотнительная техника: Справочник. / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общей редакцией А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с. С. 175, рис. 4.22).

Недостатком этого уплотнения является наличие повышенных утечек через вторичное уплотнение из-за наличия разреза поршневого кольца. При повышении температуры уплотняемой среды из-за различия коэффициентов температурного линейного расширения уплотнительного кольца и поршневого кольца контактное давление и величина зазора в поперечном разрезе поршневого кольца изменяются, что снижает эффективность торцового уплотнения.

В качестве наиболее близкого аналога выбрано торцовое газодинамическое уплотнение фирмы John Crane тип 28ST (https://www.johncrane.com/products/mechanical-seals/dry-gas/type-28st, и https://www.johncrane.eom/~/media/J/Johncrane_com/Files/Products/Tech1%20Specification/Seals/TD-28ST-4PG-BW-OCT2015.pdf, информационный материал прилагается). Уплотнение содержит невращающееся подвижное в осевом направлении уплотнительное кольцо, прижатое пружинами к вращающейся втулке, на рабочем торце которой выполнены газодинамические камеры в виде спиральных канавок, а также вторичное уплотнение из трех блоков сегментных графитовых колец, обжатых браслетными пружинами и расположенных относительно друг друга таким образом, чтобы взаимно перекрыть разрезы графитовых колец. Это позволяет использовать уплотнение при температуре уплотняемой среды до 400°C.

Недостатком конструкции данного уплотнения является наличие разгерметизации во вторичном уплотнении при повышении температуры уплотняемой среды, так как из-за различия коэффициентов температурного линейного расширения материала корпуса и графита нарушится концентричность соприкасаемых поверхностей корпуса и графитовых колец и увеличатся зазоры между торцами сегментов графитовых колец. Также это приведет к повышенному изнашиванию графитовых колец по внутреннему диаметру при частой смене температурного режима, что характерно для авиационных газотурбинных двигателей.

Цель изобретения - повышение эффективности и ресурса торцового уплотнения при повышенной температуре уплотняемой среды.

Поставленная цель достигается тем, что предлагается торцовое газодинамическое уплотнение опоры ротора турбомашины, содержащее невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, отличающееся тем, что уплотнительное кольцо и контактирующее с ним уплотнительное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30, уплотнительное кольцо вторичного уплотнения установлено в канавке корпуса и контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в той же канавке и выполненными из материала с малой теплопроводностью, причем уплотнительное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между уплотнительными кольцами первичного и вторичного уплотнения, обеспечивающей, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного кольца вторичного уплотнения с дополнительными уплотнительными кольцами на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины, а во вращающейся втулке выполнены сквозные отверстия, соединяющие зазор между торцами вращающейся втулки и уплотнительного кольца с масляной ванной, образованной отбортовкой, выполненной на другом торце вращающейся втулки, равнорасположенные по окружности между спиральными канавками или непосредственно в спиральных канавках.

При вращении ротора газодинамические спиральные канавки обеспечивают бесконтактную работу уплотнения на всех режимах с оборотами, большими и приблизительно равными 500 об/мин, благодаря чему износ уплотнительного кольца первичного уплотнения и вращающейся втулки на этих режимах будет исключен или незначителен.

При работе турбомашины на режимах с оборотами, меньшими 500 об/мин, например на переходных режимах, при останове и запуске турбомашины уплотнительное кольцо первичного уплотнения и вращающаяся втулка хотя и находятся в непосредственном контакте, но контактируют по хорошо смазываемым маслом поверхностям, поступающим в зону контакта под действием центробежных сил из масляной ванны через отверстия во вращающейся втулке и равномерно размазываемым по ним при вращении втулки.

Коэффициент трения скольжения бронзы БрС30 по стали при смазке по одному источнику (см. Интернет, Справочник конструктора - машиностроителя, sprav-constr.m/htm/tom1/pages/chapter1/ckm18.html) равен µ=0,004, а по другому источнику (см. Интернет, Марочник металлов, metallicheckiy-portal/ru/marki_metallov/broBrS30) µ=0,009, т.е. в 4,5÷10 раз меньше коэффициента трения скольжения графита, из которого делают разрезные уплотнительные кольца известных конструкций РТКУ (радиально торцового уплотнения), по стали при смазанных контактных поверхностях.

Благодаря столь низкому коэффициенту трения скольжения пары «уплотнительное кольцо - вращающаяся втулка» интенсивность износа этих деталей на этих режимах также будет очень низкой, и, следовательно, ресурс работы предлагаемого торцового газодинамического уплотнения будет высоким.

Теплота трения, выделяемая в контакте этой пары на любом режиме работы двигателя, невелика. К тому же пара трения охлаждается маслом, омывающим вращающуюся втулку с обратной стороны.

Уплотнительное кольцо первичного уплотнения быстро прогревается до определенной температуры, величина которой определяется его условиями теплообмена с омывающими его воздушной и масляной полостями. Уплотнительное кольцо вторичного уплотнения прогревается до этой же температуры, так как оно изготовлено из того же материала, а теплоотвод от него в корпус практически исключается за счет того, что это кольцо контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в корпусе и выполненными из материала с малой теплопроводностью. При этом практически не происходит изменения величины натяга между уплотнительным кольцом первичного уплотнения и контактирующим с ним уплотнительным кольцом вторичного уплотнения, и, следовательно, не происходит раззазоривания в стыке между этими уплотнительными кольцами и в разрезе уплотнительного кольца вторичного уплотнения. Этим и обеспечивается высокая эффективность предлагаемого торцового газодинамического уплотнения.

Требуемая ширина разреза уплотнительного кольца вторичного уплотнения в ряде случаев может оказаться меньше 0,5 мм. Причем должна быть обеспечена высокая точность этого размера и его формы, высокая чистота поверхностей в разрезе и очень незначительная зона у разреза, где допустимо некоторое изменение свойств металла кольца. Все эти условия могут быть выполнены при резке лазером на серийно выпускаемых установках при должном подборе мощности лазера, фокусности его луча и газовой среде, в которой происходит резка.

На фиг. 1 изображен продольный разрез предлагаемого торцового газодинамического уплотнения опоры ротора турбомашины. Детали опоры ротора, не относящиеся к уплотнению и не описанные в описании, показаны тонкой сплошной линией, как «обстановка» на сборочном чертеже.

На фиг. 2 изображен вид по стр. А на фиг. 1 на торцовую поверхность вращающейся втулки, у которой сквозные отверстия, подающие масло для смазки этой поверхности, расположены между спиральными канавками. Стрелкой показано направление вращения втулки.

На фиг. 3 изображен вид по стр. А на фиг. 1 на торцовую поверхность вращающейся втулки, у которой сквозные отверстия, подающие масло для смазки этой поверхности, расположены в спиральных канавках.

Торцовое газодинамическое уплотнение опоры ротора турбомашины (см. фиг. 1) содержит невращающееся подвижное в осевом направлении уплотнительное кольцо 1 первичного уплотнения, прижатое пружинами или пружиной 2 к вращающейся втулке 3, на рабочем торце которой выполнены спиральные газодинамические камеры 4 (см. фиг. 1 и 2), и вторичное уплотнение (см. фиг. 1), выполненное в виде уплотнительного разрезного кольца 5, установленного в канавке корпуса 6 вместе с контактирующими с ним по торцам двумя дополнительными уплотнительными кольцами 7 и 8 и промежуточным кольцом 9, обеспечивающем осевой зазор между кольцами 7 и 8. Весь пакет вторичного уплотнения фиксируется разрезным упругим кольцом 10. Уплотнительное кольцо 1 установлено в корпусе 6, фиксируется от проворота за счет наличия на его наружной поверхности выступа 11, входящего в осевую канавку 12, выполненную в корпусе 6, и фиксируется упругим разрезным кольцом 13 от выпадания при монтаже из-за действия пружины 2. Уплотнительное кольцо 1 и контактирующее с ним с натягом по цилиндрической наружной поверхности уплотнительное разрезное кольцо 5 вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, например из бронзы БрС30. Причем уплотнительное разрезное кольцо 5 вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм, выполненным, например, лазерной резкой, и ширина разреза выполнена такой, чтобы при требуемой величине натяга между этими уплотнительными кольцами обеспечивалась, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного разрезного кольца 5 вторичного уплотнения с дополнительными уплотнительными кольцами 7 и 8 на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца 1 первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца 5 вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины. Дополнительные уплотнительные кольца 7 и 8 выполнены из материала с малой теплопроводностью. С обратной стороны вращающейся втулки 3 выполнена по наружному диаметру отбортовка 14, образующая масляную ванну, в которую подается масло от форсунки 15. Во вращающейся втулке 3 выполнены сквозные отверстия 16 (см. фиг. 1, 2 и 3), соединяющие зазор 17 между торцами вращающейся втулки 3 и уплотнительного кольца 1 с масляной ванной, равнорасположенные по окружности между спиральными канавками 4 (см. фиг. 2) или непосредственно в спиральных канавках 4 (см. фиг. 3).

Сборка предлагаемого торцового газодинамического уплотнения ясна из описания и чертежей и не описывается.

Торцовое газодинамическое уплотнение служит для снижения утечек уплотняемой среды из полости 18 (см. фиг. 1) в масляную полость 19.

При работе турбомашины газодинамические камеры 4 обеспечивают бесконтактную работу торцового уплотнения, начиная приблизительно с 500 об/мин. Форсунки 15 подают масло в масляную ванну под отбортовку 14. Это обеспечивает прокачку масла под действием центробежных сил и охлаждение вращающейся втулки 3. Уплотнительное разрезное кольцо 5 контактирует с уплотнительным кольцом 1 и обеспечивает герметизацию соединения при осевых смещениях уплотнительного кольца 1 относительно корпуса 6. Наличие дополнительных уплотнительных колец 7 и 8, выполненных из материала с малой теплопроводностью, существенно снижает теплоотвод от уплотнительного кольца 5 в корпус 6. Это обеспечивает одинаковость температур уплотнительных колец 1 и 5 и, так как эти кольца изготовлены из одного металла, в итоге обеспечивает герметичность и надежность вторичного уплотнения при изменении температуры уплотняемой среды.

При останове или разгоне турбомашины или ее работе на переходных режимах с оборотами, меньшими 500 об/мин, уплотнительное кольцо 1 находится в непосредственном контакте с вращающейся втулкой 3 и торцовое газодинамическое уплотнение работает как РТКУ. При этом контактирующие поверхности хорошо смазываются маслом, подаваемым под действием центробежных сил из масляной ванны через отверстия 16, и далее под действием этих же сил на охлаждение уплотнительного кольца 1 в полость 20 снаружи этого кольца. Ввиду чрезвычайно малого коэффициента трения скольжения на контактных поверхностях этой пары (см. выше) теплота трения, выделяемая в контакте этой пары и на этих режимах работы турбомашины, невелика. К тому же эта пара трения хорошо охлаждается маслом, омывающим вращающуюся втулку 3 с обратной стороны и уплотнительное кольцо 1 снаружи. Поэтому и на этих режимах исключен перегрев деталей торцового уплотнения (особенно уплотнительного кольца 1 и вращающейся втулки 3) и обеспечена герметичность и надежность работы предлагаемого торцового газодинамического уплотнения.

Наличие натяга между уплотнительным кольцом 1 первичного уплотнения и уплотнительным разрезным кольцом 5 вторичного уплотнения повышает надежность и «запас» по герметичности предлагаемого торцового газодинамического уплотнения опоры ротора турбомашины.

Другие преимущества этого уплотнения описаны выше.

Торцовое газодинамическое уплотнение опоры ротора турбомашины, содержащее невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, отличающееся тем, что уплотнительное кольцо и контактирующее с ним уплотнительное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30, уплотнительное кольцо вторичного уплотнения установлено в канавке корпуса и контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в той же канавке и выполненными из материала с малой теплопроводностью, причем уплотнительное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между уплотнительными кольцами первичного и вторичного уплотнения, обеспечивающей, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного кольца вторичного уплотнения с дополнительными уплотнительными кольцами на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины, а во вращающейся втулке выполнены сквозные отверстия, соединяющие зазор между торцами вращающейся втулки и уплотнительного кольца с масляной ванной, образованной отбортовкой, выполненной на другом торце вращающейся втулки, равнорасположенные по окружности между спиральными канавками или непосредственно в спиральных канавках.
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 114.
13.01.2017
№217.015.876d

Способ формообразования тонкостенных осесимметричных деталей конической формы

Изобретение относится к холодной листовой штамповке, в частности к формообразованию тонкостенных осесимметричных оболочек, и может быть использовано при изготовлении крупногабаритных тонкостенных деталей усеченной сужающейся формы на прессах двойного действия. К заготовке прикладывают рабочее...
Тип: Изобретение
Номер охранного документа: 0002603410
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.88d0

Керамическая композиция для изготовления кирпича

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Керамическая масса содержит следующие компоненты, мас.%: межсланцевая глина 50-70, горелые породы, образовавшиеся после самовозгорания горючих сланцев, 25-38,...
Тип: Изобретение
Номер охранного документа: 0002602622
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88f7

Передняя опора ротора вентилятора двухконтурного турбореактивного двигателя

Изобретение относится к авиационным двухконтурным турбореактивным двигателям (ТРДД). Предложена передняя опора ротора вентилятора двухконтурного турбореактивного двигателя, содержащая ступицу, корпус подшипника, два упругих элемента, соединенных параллельно так, что их жесткости суммируются,...
Тип: Изобретение
Номер охранного документа: 0002602470
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.891f

Композиция для изготовления жаростойких композитов

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления...
Тип: Изобретение
Номер охранного документа: 0002602542
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8930

Композиция для производства пористого заполнителя

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002602623
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.894d

Способ изготовления тонких полос из труднодеформируемых алюминий-литиевых сплавов

Изобретение относится к обработке металлов давлением, в частности к производству тонких листов из труднодеформируемых алюминиевых сплавов, в том числе алюминий-литиевых сплавов, и может быть использовано при производстве обшивочных листов для аэрокосмической промышленности и судостроения. При...
Тип: Изобретение
Номер охранного документа: 0002602583
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8cb1

Двухкомпонентная центробежная форсунка с интенсивным смесеобразованием

Изобретение предназначено для организации смесеобразования и горения самовоспламеняющегося топлива в жидкостных ракетных двигателях малой тяги (ЖРДМТ), работающих в вакууме. Устройство состоит из предкамеры 1 и камеры сгорания 2. В предкамере 1 выполнены каналы 3 для подачи компонентов топлива,...
Тип: Изобретение
Номер охранного документа: 0002604974
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.9bdc

Способ оздоровления больных в острый период инсульта

Изобретение относится к медицине, реабилитации, неврологии, лечебной физкультуре и может быть использовано в комплексном лечении больных в острый период инсульта. Проводят дозированные физические нагрузки, включающие однонаправленные и разнонаправленные движения, активные и пассивные с помощью...
Тип: Изобретение
Номер охранного документа: 0002609997
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9c41

Способ работы и устройство блока пульсирующих камер сгорания

Способ работы блока пульсирующих камер сгорания заключается в подаче воздуха в каждую из неподвижных цилиндрических камер сгорания через входные воздушные окна в течение времени их периодического открытия, подаче топлива в камеры сгорания, зажигании его искровым зарядом в периоды закрытия...
Тип: Изобретение
Номер охранного документа: 0002610362
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.9c85

Устройство для исследования потоков микрометеороидов и частиц космического мусора

Изобретение относится к области космического приборостроения и касается устройства для исследования потоков микрометеороидов и частиц космического мусора. Устройство включает в себя мишень, крепежный диск, лазер, ПЗС-матрицу, шаговый двигатель, двигатель диска, светодиод, фотодиод, блок...
Тип: Изобретение
Номер охранного документа: 0002610342
Дата охранного документа: 09.02.2017
Показаны записи 71-80 из 122.
13.01.2017
№217.015.8cb1

Двухкомпонентная центробежная форсунка с интенсивным смесеобразованием

Изобретение предназначено для организации смесеобразования и горения самовоспламеняющегося топлива в жидкостных ракетных двигателях малой тяги (ЖРДМТ), работающих в вакууме. Устройство состоит из предкамеры 1 и камеры сгорания 2. В предкамере 1 выполнены каналы 3 для подачи компонентов топлива,...
Тип: Изобретение
Номер охранного документа: 0002604974
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.9bdc

Способ оздоровления больных в острый период инсульта

Изобретение относится к медицине, реабилитации, неврологии, лечебной физкультуре и может быть использовано в комплексном лечении больных в острый период инсульта. Проводят дозированные физические нагрузки, включающие однонаправленные и разнонаправленные движения, активные и пассивные с помощью...
Тип: Изобретение
Номер охранного документа: 0002609997
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9c41

Способ работы и устройство блока пульсирующих камер сгорания

Способ работы блока пульсирующих камер сгорания заключается в подаче воздуха в каждую из неподвижных цилиндрических камер сгорания через входные воздушные окна в течение времени их периодического открытия, подаче топлива в камеры сгорания, зажигании его искровым зарядом в периоды закрытия...
Тип: Изобретение
Номер охранного документа: 0002610362
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.9c85

Устройство для исследования потоков микрометеороидов и частиц космического мусора

Изобретение относится к области космического приборостроения и касается устройства для исследования потоков микрометеороидов и частиц космического мусора. Устройство включает в себя мишень, крепежный диск, лазер, ПЗС-матрицу, шаговый двигатель, двигатель диска, светодиод, фотодиод, блок...
Тип: Изобретение
Номер охранного документа: 0002610342
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.a993

Радиально-торцовое газодинамическое уплотнение масляной полости опор роторов турбомашин

Радиально-торцовое газодинамическое уплотнение масляной полости опор роторов турбомашин, содержащее крышку масляной полости опоры, изготовленную из магниевого или титанового сплава, размещенные в ней: газодинамическое уплотнение, уплотняющее масляную полость опоры, содержащее корпус...
Тип: Изобретение
Номер охранного документа: 0002611706
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.af46

Способ бесконтактного измерения электромагнитных параметров материалов

Способ относится к контрольно-измерительной технике и может быть использован для бесконтактного оперативного измерения удельной электрической проводимости, а также диэлектрической и магнитной проницаемостей материалов. Способ измерения электромагнитных параметров материалов заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002610878
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.b263

Устройство для определения нагрузочной способности микросхем

Изобретение относится к области микроминиатюризации и технологии радиоэлектронной аппаратуры и может быть использовано для контроля параметров микросхем при их производстве. Технический результат: повышение точности и достоверности определения нагрузочной способности микросхем. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002613568
Дата охранного документа: 17.03.2017
25.08.2017
№217.015.b2f6

Устройство косвенно-испарительного охлаждения сжатого газа компрессорной станции магистрального газопровода

Изобретение относится к области компрессорных станций магистральных газопроводов и, в частности, к аппаратам воздушного охлаждения газа с выработкой электроэнергии для электроснабжения собственных нужд. Устройство воздушного косвенно-испарительного охлаждения сжатого газа содержит внешний сухой...
Тип: Изобретение
Номер охранного документа: 0002613791
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b2f7

Устройство косвенно-испарительного охлаждения сжатого газа компрессорной станции магистрального газопровода

Изобретение относится к области компрессорных станций магистральных газопроводов и, в частности, к аппаратам воздушного охлаждения газа с выработкой электроэнергии для электроснабжения собственных нужд. Устройство воздушного косвенно-испарительного охлаждения сжатого газа содержит внешний сухой...
Тип: Изобретение
Номер охранного документа: 0002613791
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b3c8

Керамическая композиция для изготовления стеновых материалов

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического стенового материала. Технический результат заключается в повышении морозостойкости и прочности при сжатии керамического стенового материала. Керамическая композиция для...
Тип: Изобретение
Номер охранного документа: 0002613702
Дата охранного документа: 21.03.2017
+ добавить свой РИД