×
13.01.2017
217.015.77cb

Результат интеллектуальной деятельности: ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок. Торцовое газодинамическое уплотнение опоры ротора турбомашины содержит невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, выполненное в виде уплотнительного разрезного кольца, установленного в канавке корпуса вместе с контактирующими с ним по торцам двумя дополнительными уплотнительными кольцами и промежуточным кольцом. Весь пакет вторичного уплотнения фиксируется разрезным упругим кольцом. Уплотнительное кольцо первичного уплотнения установлено в корпусе и фиксируется от проворота за счет наличия на его наружной поверхности выступа и фиксируется упругим разрезным кольцом от выпадания при монтаже из-за действия пружины. Это уплотнительное кольцо и контактирующее с ним с натягом по цилиндрической наружной поверхности уплотнительное разрезное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30. Причем уплотнительное разрезное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между этими уплотнительными кольцами обеспечивалась герметичность всех стыков на всех режимах работы турбомашины и отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой, а зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным. Изобретение повышает надежность уплотнения. 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей и энергетических установок.

Известно торцовое уплотнение газовой турбины, установленное на валу ротора турбомашины, содержащее уплотнительное кольцо, установленное в корпусе и прижатое пружинами к вращающейся втулке, а также вторичное уплотнение в виде поршневого кольца, которое герметизирует соединение уплотнительного кольца и корпуса при их взаимных перемещениях (Уплотнения и уплотнительная техника: Справочник. / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общей редакцией А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с. С. 302, рис. 9.12). Данное уплотнение из-за применения поршневого чугунного кольца вместо традиционного вторичного уплотнения из резины можно применять при высоких температурах уплотняемой среды. Поршневое кольцо имеет поперечный разрез, наружный диаметр кольца выполняется диаметра корпуса, благодаря чему при установке кольца в результате его деформации на цилиндрической уплотняемой поверхности создается контактное давление (Уплотнения и уплотнительная техника: Справочник. / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общей редакцией А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с. С. 175, рис. 4.22).

Недостатком этого уплотнения является наличие повышенных утечек через вторичное уплотнение из-за наличия разреза поршневого кольца. При повышении температуры уплотняемой среды из-за различия коэффициентов температурного линейного расширения уплотнительного кольца и поршневого кольца контактное давление и величина зазора в поперечном разрезе поршневого кольца изменяются, что снижает эффективность торцового уплотнения.

В качестве наиболее близкого аналога выбрано торцовое газодинамическое уплотнение фирмы John Crane тип 28ST (https://www.johncrane.com/products/mechanical-seals/dry-gas/type-28st, и https://www.johncrane.eom/~/media/J/Johncrane_com/Files/Products/Tech1%20Specification/Seals/TD-28ST-4PG-BW-OCT2015.pdf, информационный материал прилагается). Уплотнение содержит невращающееся подвижное в осевом направлении уплотнительное кольцо, прижатое пружинами к вращающейся втулке, на рабочем торце которой выполнены газодинамические камеры в виде спиральных канавок, а также вторичное уплотнение из трех блоков сегментных графитовых колец, обжатых браслетными пружинами и расположенных относительно друг друга таким образом, чтобы взаимно перекрыть разрезы графитовых колец. Это позволяет использовать уплотнение при температуре уплотняемой среды до 400°C.

Недостатком конструкции данного уплотнения является наличие разгерметизации во вторичном уплотнении при повышении температуры уплотняемой среды, так как из-за различия коэффициентов температурного линейного расширения материала корпуса и графита нарушится концентричность соприкасаемых поверхностей корпуса и графитовых колец и увеличатся зазоры между торцами сегментов графитовых колец. Также это приведет к повышенному изнашиванию графитовых колец по внутреннему диаметру при частой смене температурного режима, что характерно для авиационных газотурбинных двигателей.

Цель изобретения - повышение эффективности и ресурса торцового уплотнения при повышенной температуре уплотняемой среды.

Поставленная цель достигается тем, что предлагается торцовое газодинамическое уплотнение опоры ротора турбомашины, содержащее невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, отличающееся тем, что уплотнительное кольцо и контактирующее с ним уплотнительное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30, уплотнительное кольцо вторичного уплотнения установлено в канавке корпуса и контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в той же канавке и выполненными из материала с малой теплопроводностью, причем уплотнительное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между уплотнительными кольцами первичного и вторичного уплотнения, обеспечивающей, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного кольца вторичного уплотнения с дополнительными уплотнительными кольцами на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины, а во вращающейся втулке выполнены сквозные отверстия, соединяющие зазор между торцами вращающейся втулки и уплотнительного кольца с масляной ванной, образованной отбортовкой, выполненной на другом торце вращающейся втулки, равнорасположенные по окружности между спиральными канавками или непосредственно в спиральных канавках.

При вращении ротора газодинамические спиральные канавки обеспечивают бесконтактную работу уплотнения на всех режимах с оборотами, большими и приблизительно равными 500 об/мин, благодаря чему износ уплотнительного кольца первичного уплотнения и вращающейся втулки на этих режимах будет исключен или незначителен.

При работе турбомашины на режимах с оборотами, меньшими 500 об/мин, например на переходных режимах, при останове и запуске турбомашины уплотнительное кольцо первичного уплотнения и вращающаяся втулка хотя и находятся в непосредственном контакте, но контактируют по хорошо смазываемым маслом поверхностям, поступающим в зону контакта под действием центробежных сил из масляной ванны через отверстия во вращающейся втулке и равномерно размазываемым по ним при вращении втулки.

Коэффициент трения скольжения бронзы БрС30 по стали при смазке по одному источнику (см. Интернет, Справочник конструктора - машиностроителя, sprav-constr.m/htm/tom1/pages/chapter1/ckm18.html) равен µ=0,004, а по другому источнику (см. Интернет, Марочник металлов, metallicheckiy-portal/ru/marki_metallov/broBrS30) µ=0,009, т.е. в 4,5÷10 раз меньше коэффициента трения скольжения графита, из которого делают разрезные уплотнительные кольца известных конструкций РТКУ (радиально торцового уплотнения), по стали при смазанных контактных поверхностях.

Благодаря столь низкому коэффициенту трения скольжения пары «уплотнительное кольцо - вращающаяся втулка» интенсивность износа этих деталей на этих режимах также будет очень низкой, и, следовательно, ресурс работы предлагаемого торцового газодинамического уплотнения будет высоким.

Теплота трения, выделяемая в контакте этой пары на любом режиме работы двигателя, невелика. К тому же пара трения охлаждается маслом, омывающим вращающуюся втулку с обратной стороны.

Уплотнительное кольцо первичного уплотнения быстро прогревается до определенной температуры, величина которой определяется его условиями теплообмена с омывающими его воздушной и масляной полостями. Уплотнительное кольцо вторичного уплотнения прогревается до этой же температуры, так как оно изготовлено из того же материала, а теплоотвод от него в корпус практически исключается за счет того, что это кольцо контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в корпусе и выполненными из материала с малой теплопроводностью. При этом практически не происходит изменения величины натяга между уплотнительным кольцом первичного уплотнения и контактирующим с ним уплотнительным кольцом вторичного уплотнения, и, следовательно, не происходит раззазоривания в стыке между этими уплотнительными кольцами и в разрезе уплотнительного кольца вторичного уплотнения. Этим и обеспечивается высокая эффективность предлагаемого торцового газодинамического уплотнения.

Требуемая ширина разреза уплотнительного кольца вторичного уплотнения в ряде случаев может оказаться меньше 0,5 мм. Причем должна быть обеспечена высокая точность этого размера и его формы, высокая чистота поверхностей в разрезе и очень незначительная зона у разреза, где допустимо некоторое изменение свойств металла кольца. Все эти условия могут быть выполнены при резке лазером на серийно выпускаемых установках при должном подборе мощности лазера, фокусности его луча и газовой среде, в которой происходит резка.

На фиг. 1 изображен продольный разрез предлагаемого торцового газодинамического уплотнения опоры ротора турбомашины. Детали опоры ротора, не относящиеся к уплотнению и не описанные в описании, показаны тонкой сплошной линией, как «обстановка» на сборочном чертеже.

На фиг. 2 изображен вид по стр. А на фиг. 1 на торцовую поверхность вращающейся втулки, у которой сквозные отверстия, подающие масло для смазки этой поверхности, расположены между спиральными канавками. Стрелкой показано направление вращения втулки.

На фиг. 3 изображен вид по стр. А на фиг. 1 на торцовую поверхность вращающейся втулки, у которой сквозные отверстия, подающие масло для смазки этой поверхности, расположены в спиральных канавках.

Торцовое газодинамическое уплотнение опоры ротора турбомашины (см. фиг. 1) содержит невращающееся подвижное в осевом направлении уплотнительное кольцо 1 первичного уплотнения, прижатое пружинами или пружиной 2 к вращающейся втулке 3, на рабочем торце которой выполнены спиральные газодинамические камеры 4 (см. фиг. 1 и 2), и вторичное уплотнение (см. фиг. 1), выполненное в виде уплотнительного разрезного кольца 5, установленного в канавке корпуса 6 вместе с контактирующими с ним по торцам двумя дополнительными уплотнительными кольцами 7 и 8 и промежуточным кольцом 9, обеспечивающем осевой зазор между кольцами 7 и 8. Весь пакет вторичного уплотнения фиксируется разрезным упругим кольцом 10. Уплотнительное кольцо 1 установлено в корпусе 6, фиксируется от проворота за счет наличия на его наружной поверхности выступа 11, входящего в осевую канавку 12, выполненную в корпусе 6, и фиксируется упругим разрезным кольцом 13 от выпадания при монтаже из-за действия пружины 2. Уплотнительное кольцо 1 и контактирующее с ним с натягом по цилиндрической наружной поверхности уплотнительное разрезное кольцо 5 вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, например из бронзы БрС30. Причем уплотнительное разрезное кольцо 5 вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм, выполненным, например, лазерной резкой, и ширина разреза выполнена такой, чтобы при требуемой величине натяга между этими уплотнительными кольцами обеспечивалась, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного разрезного кольца 5 вторичного уплотнения с дополнительными уплотнительными кольцами 7 и 8 на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца 1 первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца 5 вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины. Дополнительные уплотнительные кольца 7 и 8 выполнены из материала с малой теплопроводностью. С обратной стороны вращающейся втулки 3 выполнена по наружному диаметру отбортовка 14, образующая масляную ванну, в которую подается масло от форсунки 15. Во вращающейся втулке 3 выполнены сквозные отверстия 16 (см. фиг. 1, 2 и 3), соединяющие зазор 17 между торцами вращающейся втулки 3 и уплотнительного кольца 1 с масляной ванной, равнорасположенные по окружности между спиральными канавками 4 (см. фиг. 2) или непосредственно в спиральных канавках 4 (см. фиг. 3).

Сборка предлагаемого торцового газодинамического уплотнения ясна из описания и чертежей и не описывается.

Торцовое газодинамическое уплотнение служит для снижения утечек уплотняемой среды из полости 18 (см. фиг. 1) в масляную полость 19.

При работе турбомашины газодинамические камеры 4 обеспечивают бесконтактную работу торцового уплотнения, начиная приблизительно с 500 об/мин. Форсунки 15 подают масло в масляную ванну под отбортовку 14. Это обеспечивает прокачку масла под действием центробежных сил и охлаждение вращающейся втулки 3. Уплотнительное разрезное кольцо 5 контактирует с уплотнительным кольцом 1 и обеспечивает герметизацию соединения при осевых смещениях уплотнительного кольца 1 относительно корпуса 6. Наличие дополнительных уплотнительных колец 7 и 8, выполненных из материала с малой теплопроводностью, существенно снижает теплоотвод от уплотнительного кольца 5 в корпус 6. Это обеспечивает одинаковость температур уплотнительных колец 1 и 5 и, так как эти кольца изготовлены из одного металла, в итоге обеспечивает герметичность и надежность вторичного уплотнения при изменении температуры уплотняемой среды.

При останове или разгоне турбомашины или ее работе на переходных режимах с оборотами, меньшими 500 об/мин, уплотнительное кольцо 1 находится в непосредственном контакте с вращающейся втулкой 3 и торцовое газодинамическое уплотнение работает как РТКУ. При этом контактирующие поверхности хорошо смазываются маслом, подаваемым под действием центробежных сил из масляной ванны через отверстия 16, и далее под действием этих же сил на охлаждение уплотнительного кольца 1 в полость 20 снаружи этого кольца. Ввиду чрезвычайно малого коэффициента трения скольжения на контактных поверхностях этой пары (см. выше) теплота трения, выделяемая в контакте этой пары и на этих режимах работы турбомашины, невелика. К тому же эта пара трения хорошо охлаждается маслом, омывающим вращающуюся втулку 3 с обратной стороны и уплотнительное кольцо 1 снаружи. Поэтому и на этих режимах исключен перегрев деталей торцового уплотнения (особенно уплотнительного кольца 1 и вращающейся втулки 3) и обеспечена герметичность и надежность работы предлагаемого торцового газодинамического уплотнения.

Наличие натяга между уплотнительным кольцом 1 первичного уплотнения и уплотнительным разрезным кольцом 5 вторичного уплотнения повышает надежность и «запас» по герметичности предлагаемого торцового газодинамического уплотнения опоры ротора турбомашины.

Другие преимущества этого уплотнения описаны выше.

Торцовое газодинамическое уплотнение опоры ротора турбомашины, содержащее невращающееся подвижное в осевом направлении уплотнительное кольцо первичного уплотнения, прижатое пружинами или пружиной к вращающейся втулке, на рабочем торце которой выполнены спиральные газодинамические камеры, и вторичное уплотнение, отличающееся тем, что уплотнительное кольцо и контактирующее с ним уплотнительное кольцо вторичного уплотнения выполнены из одного износостойкого материала с малым коэффициентом трения скольжения в паре со сталью и с высокой теплопроводностью, предпочтительно из бронзы БрС30, уплотнительное кольцо вторичного уплотнения установлено в канавке корпуса и контактирует торцами с двумя дополнительными уплотнительными кольцами, установленными в той же канавке и выполненными из материала с малой теплопроводностью, причем уплотнительное кольцо вторичного уплотнения изготовлено с радиальным разрезом с шириной более 100 мкм и ширина разреза выполнена такой, чтобы при требуемой величине натяга между уплотнительными кольцами первичного и вторичного уплотнения, обеспечивающей, во-первых, герметичность стыка этих уплотнительных колец и стыков уплотнительного кольца вторичного уплотнения с дополнительными уплотнительными кольцами на всех режимах работы турбомашины и, во-вторых, отсутствие непосредственного контакта уплотнительного кольца первичного уплотнения с вращающейся втулкой на всех режимах работы турбомашины с оборотами, большими и приблизительно равными 500 об/мин, зазор в разрезе уплотнительного кольца вторичного уплотнения оставался полностью выбранным на всех режимах работы турбомашины, а во вращающейся втулке выполнены сквозные отверстия, соединяющие зазор между торцами вращающейся втулки и уплотнительного кольца с масляной ванной, образованной отбортовкой, выполненной на другом торце вращающейся втулки, равнорасположенные по окружности между спиральными канавками или непосредственно в спиральных канавках.
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
ТОРЦОВОЕ ГАЗОДИНАМИЧЕСКОЕ УПЛОТНЕНИЕ ОПОРЫ РОТОРА ТУРБОМАШИНЫ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 114.
13.01.2017
№217.015.6a19

Композиция для изготовления жаростойких композитов

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химическим связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных...
Тип: Изобретение
Номер охранного документа: 0002592922
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6a70

Композиция для изготовления жаростойких бетонов

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих в виде фосфатных связок. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких бетонов. Это...
Тип: Изобретение
Номер охранного документа: 0002592927
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6b45

Упругодемпферная опора ротора тяжелой турбомашины

Упругодемпферная опора ротора тяжелой турбомашины относится к ГТД авиационного и наземного применения, а именно к конструкции упругодемпферной опоры компрессора мощной турбомашины наземного применения или мощного ГТД тяжелого самолета, не летающего в перевернутом полете. Предложена...
Тип: Изобретение
Номер охранного документа: 0002592664
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c23

Имплантат позвонка

Изобретение относится к медицине, а именно к травматологии и ортопедии. Имплантат позвонка содержит основную часть с поперечным отверстием. Основная часть на своих торцах имеет анатомическую форму, соответствующую форме реального позвонка. На боковых поверхностях основной части выполнена...
Тип: Изобретение
Номер охранного документа: 0002592606
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c7f

Устройство для экспресс-индикации воздействия водорода на растения

Изобретение относится к переносным устройствам для экспресс-оценки оптических характеристик растений на определенных волновых числах, закономерное изменение амплитуды которых является признаком влияния водорода, и может применяться для выявления зон эманации водорода за счет использования...
Тип: Изобретение
Номер охранного документа: 0002592740
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.77c9

Малый космический аппарат для регистрации частиц космического мусора и микрометеороидов

Изобретение относится к области космического приборостроения и может быть использовано для сбора данных о параметрах движения космических объектов - частиц космического мусора и микрометеороидов. Малый космический аппарат для регистрации частиц космического мусора и микрометеороидов состоит из...
Тип: Изобретение
Номер охранного документа: 0002598978
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.77fa

Устройство для защиты космического аппарата от микрометеороидов

Изобретение относится к защите от микрометеороидов. Устройство для защиты космического аппарата от микрометеороидов состоит из металлического защитного экрана, изоляционного слоя, диэлектрического экрана и системы энергопитания для создания разности потенциалов. Система энергопитания имеет два...
Тип: Изобретение
Номер охранного документа: 0002598927
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.846c

Способ выдавливания деталей типа стаканов и устройство для его осуществления

Изобретение относится к обработке металлов давлением и может быть использовано при получении деталей типа глубоких цилиндрических стаканов с конической придонной частью. Цилиндрическую заготовку, диаметр которой равен внешнему диаметру донной части стакана, деформируют путем перемещения через...
Тип: Изобретение
Номер охранного документа: 0002602936
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.86df

Способ запуска микро- и наноспутников и устройство на основе микропроцессорной магнитоиндукционной системы для осуществления запуска

Группа изобретений относится к космической технике. Способ запуска микро- и наноспутников заключается в том, что после установки запускаемого спутника с одноосным гироскопом на основании и после выбора с помощью электромеханической системы ориентации заданного направления производится раскрутка...
Тип: Изобретение
Номер охранного документа: 0002603441
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8715

Устройство для бесслитковой прокатки жидкого металла

Изобретение относится к области металлургии, а именно к бесслитковой прокатке ленты между валками-кристаллизаторами. Устройство содержит металлоприемник (1), валки-кристаллизаторы (2) и индуктор (6) с магнитно-импульсной установкой, соединенный с металлоприемником. Металлоприемник с...
Тип: Изобретение
Номер охранного документа: 0002603412
Дата охранного документа: 27.11.2016
Показаны записи 61-70 из 122.
13.01.2017
№217.015.77fa

Устройство для защиты космического аппарата от микрометеороидов

Изобретение относится к защите от микрометеороидов. Устройство для защиты космического аппарата от микрометеороидов состоит из металлического защитного экрана, изоляционного слоя, диэлектрического экрана и системы энергопитания для создания разности потенциалов. Система энергопитания имеет два...
Тип: Изобретение
Номер охранного документа: 0002598927
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.846c

Способ выдавливания деталей типа стаканов и устройство для его осуществления

Изобретение относится к обработке металлов давлением и может быть использовано при получении деталей типа глубоких цилиндрических стаканов с конической придонной частью. Цилиндрическую заготовку, диаметр которой равен внешнему диаметру донной части стакана, деформируют путем перемещения через...
Тип: Изобретение
Номер охранного документа: 0002602936
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.86df

Способ запуска микро- и наноспутников и устройство на основе микропроцессорной магнитоиндукционной системы для осуществления запуска

Группа изобретений относится к космической технике. Способ запуска микро- и наноспутников заключается в том, что после установки запускаемого спутника с одноосным гироскопом на основании и после выбора с помощью электромеханической системы ориентации заданного направления производится раскрутка...
Тип: Изобретение
Номер охранного документа: 0002603441
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8715

Устройство для бесслитковой прокатки жидкого металла

Изобретение относится к области металлургии, а именно к бесслитковой прокатке ленты между валками-кристаллизаторами. Устройство содержит металлоприемник (1), валки-кристаллизаторы (2) и индуктор (6) с магнитно-импульсной установкой, соединенный с металлоприемником. Металлоприемник с...
Тип: Изобретение
Номер охранного документа: 0002603412
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.876d

Способ формообразования тонкостенных осесимметричных деталей конической формы

Изобретение относится к холодной листовой штамповке, в частности к формообразованию тонкостенных осесимметричных оболочек, и может быть использовано при изготовлении крупногабаритных тонкостенных деталей усеченной сужающейся формы на прессах двойного действия. К заготовке прикладывают рабочее...
Тип: Изобретение
Номер охранного документа: 0002603410
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.88d0

Керамическая композиция для изготовления кирпича

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического кирпича. Керамическая масса содержит следующие компоненты, мас.%: межсланцевая глина 50-70, горелые породы, образовавшиеся после самовозгорания горючих сланцев, 25-38,...
Тип: Изобретение
Номер охранного документа: 0002602622
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88f7

Передняя опора ротора вентилятора двухконтурного турбореактивного двигателя

Изобретение относится к авиационным двухконтурным турбореактивным двигателям (ТРДД). Предложена передняя опора ротора вентилятора двухконтурного турбореактивного двигателя, содержащая ступицу, корпус подшипника, два упругих элемента, соединенных параллельно так, что их жесткости суммируются,...
Тип: Изобретение
Номер охранного документа: 0002602470
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.891f

Композиция для изготовления жаростойких композитов

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких композитов. Композиция для изготовления...
Тип: Изобретение
Номер охранного документа: 0002602542
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8930

Композиция для производства пористого заполнителя

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002602623
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.894d

Способ изготовления тонких полос из труднодеформируемых алюминий-литиевых сплавов

Изобретение относится к обработке металлов давлением, в частности к производству тонких листов из труднодеформируемых алюминиевых сплавов, в том числе алюминий-литиевых сплавов, и может быть использовано при производстве обшивочных листов для аэрокосмической промышленности и судостроения. При...
Тип: Изобретение
Номер охранного документа: 0002602583
Дата охранного документа: 20.11.2016
+ добавить свой РИД