×
13.01.2017
217.015.75b0

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и маскировочных мероприятий. Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках заключается в том, что в течение времени существования аэрозольного облака, когда оно еще регистрируется на фоне неба, с использованием цифрового видеорегистратора измеряют оптическую плотность облака. Далее вычисляют нормированную оптическую плотность облака, которая уменьшается за счет выпадения сначала частиц больших радиусов. Затем измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме. Техническим результатом является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра. 1 табл., 1 ил.

Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и оценки маскировочной обстановки.

Известные оптические способы определения размеров аэрозольных частиц основаны на решении задач поглощения и рассеяния электромагнитного излучения на частицах различных размеров [Шифрин К.С, Раскин В.Ф. Спектральная прозрачность и обратная задача теории рассеяния. Оптика и спектроскопия. 1961, т. 11, №2, с. 268-271]. На этом принципе предложен ряд способов и устройств определения размеров аэрозольных частиц при использовании как белого света, так и монохроматического излучения, например [Патент RU 2098794 С1, 10.12.1997, МПК 6 G01N 15/02; Патент RU 2235990 С1, 10.09.2004, МПК 7 G01N 15/02; Патент RU 2123176 С1, 10.12.1998, МПК 6 G01N 21/25; Патент RU 2239173 С1, 27.10.2004, МПК 7 G01N 15/02].

Общим недостатком известных способов является отсутствие дистанционности при определении размеров частиц в аэрозольных облаках. Т.е. из облака отбирают пробу, которую затем помещают в устройство определения размеров аэрозолей, принцип работы которого основан на взаимодействии оптического излучения с аэрозолями.

Отбор проб не всегда технически возможен и экономически обоснован. Результаты анализа получаются не в реальном масштабе времени. Кроме того, при взрывных работах и пылении, создаваемом при движении тяжелой техники, наблюдается быстрое выпадение крупнодисперсных аэрозолей и поэтому оптические характеристики облака быстро изменяются. Т.е. вышеуказанные способы можно использовать, если облако состоит из мелкодисперсных аэрозолей, с длительным временем их существования в воздухе.

Дистанционность достигается за счет измерения оптического излучения, рассеянного аэрозольным облаком. Поскольку размеры аэрозолей, образующихся при взрывах и пылении, не менее единиц микрометров, то для решения поставленной задачи - дистанционного измерения размеров частиц в реальном масштабе времени целесообразно использовать видимую часть оптического диапазона без активной подсветки облака.

Известна зависимость оптической плотности аэрозольного облака от распределения частиц в нем, по концентрациям и размерам [В.Е. Зуев, М.В. Кабанов. Оптика атмосферного аэрозоля, М.: Гидрометеоиздат, 1987].

Основной трудностью, препятствующей реализации предлагаемого способа прототипа, является многопараметричность задачи, т.к. оптическая плотность облака зависит от начальной концентрации аэрозольных частиц, распределения этих частиц по размерам, а также от времени выпадения частиц из облака. Для практической реализации способа на первом этапе необходимо создать математическую модель, устраняющую вышеуказанную неопределенность.

Согласно теории объемного рассеяния Ми для частиц, размер которых много больше длины волны видимого излучения, объемный коэффициент рассеяния определяется выражением

где N0 - число частиц в единице объема рассеивающего облака, Rcp - усредненный радиус частиц. Объем частицы . Среднее число частиц в облаке обозначим как N. Тогда и предыдущее выражение можно записать следующим образом:

Оптическая плотность облака, зафиксированная на видеоносителе, например, с использованием цифровой видеокамеры

где Pi - повторяемость градаций частиц в их законе распределения по размерам.

Введем понятие нормированной оптической плотности облака Q(t)/Qmax. Здесь Qmax - максимальная оптическая плотность облака в начальный момент времени, когда выпадение частиц из облака еще не происходило. Отношение Q(t)/Qmax уже не зависит от начальной концентрации аэрозолей. Т.е. нормированная оптическая плотность облака зависит только от распределения частиц по размерам и времени и определяется временем осаждения аэрозольных частиц.

На выпадающую частицу действуют две силы: 1) сила тяжести , где ρ - плотность частицы, R - ее радиус; 2) сила сопротивления при движении в вязкой среде. В случае стационарного облака и ламинарного движения сферической частицы эта сила является силой Стокса , где η - коэффициент динамической вязкости воздуха, υ - скорость движения частицы. Тогда движение падающей частицы описывается дифференциальным уравнением

где - характеристический параметр движения частицы.

Решением уравнения (4) является следующее выражение:

Движение частицы происходит с переменным ускорением. Но при b≥4 частицы практически мгновенно достигают скорости равномерного движения υ0=g/b.

Интегрирование уравнения (5) определяет путь H, проходимый аэрозольной частицей за время t.


Соответственно из уравнения (6) можно определить время t0 осаждения частиц с радиусом R0 с высоты Н0 до момента падения на Землю. Т.е. за время t0 выпадают частицы с радиусами R≥R0, и соответственно уменьшается оптическая плотность облака.

Измеряя среднюю высоту аэрозольного облака [Михеев С.В. Исследование оптико-электронной системы контроля положения объекта методом триангуляции. Дис. канд. тех. наук. 2007. Санкт-Петербургский Государственный университет информационных технологий, механики и оптики. 124 с.], можно вычислить время выпадения частиц различных размеров и плотности. На фиг. 1 представлена номограмма, связывающая время выпадения частиц различных размеров и нормированную оптическую плотность облака, при его средней высоте 50 м. При радиусе частиц R≥300 мкм они падают практически свободно, не зависимо от их плотности. При меньших размерах время выпадения зависит от плотности частиц, что отражено на номограмме в виде двух ветвей, когда плотность изменяются от 1,5·103 кг/м3 - частицы почвы, до 11·103 кг/м3 - частицы тяжелых металлов. Средний радиус аэрозольной частицы определяется по попаданию точки пересечения линий времени выпадения и оптической плотности облака в ту или иную градацию.

Техническим результатом изобретения является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра.

Указанный технический результат достигается тем, что в течение времени существования аэрозольного облака, с использованием цифрового видеорегистратора измеряют оптическую плотность облака, вычисляют нормированную оптическую плотность облака, измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме.

В качестве примера рассмотрим процесс выпадения частиц гранита с плотностью ρ=2,5·103 кг/м3 из аэрозольного облака, образовывающегося при буровзрывных работах. Высота облака Н0=50 м. Грансостав выпавших частиц определялся методом осаждения в жидкости. В таблице приведены усредненные размеры выпавших частиц по девяти градациям, а также их повторяемости Р. Мелкодисперсная взвесь с радиусом R≤3 мкм образовывалась при бурении. Оставшиеся 88% частиц образовались при взрыве. По уравнению (5) определено время осаждения t0 частиц в воздухе по всем градациям. Для этих же градаций в таблице приведена нормированная оптическая плотность облака Q/Qmax, определенная по результатам цифровой видеосъемки. Для частиц с радиусами меньшими 3 мкм, оптическая плотность облака сравнивалась с фоном неба и не регистрировалась.

На фиг. 1 показаны экспериментальные точки пересечения линии времени выпадения частиц гранита, присутствующих в облаке и его нормированной оптической плотности. Как видно из фиг. 1 - получено хорошее совпадение экспериментально измеренных радиусов частиц, выпавших из облака, и оценок их радиусов по номограмме, что подтверждает достоверность результатов, полученных с использованием предложенного способа.

Таким образом, измеряя высоту и нормированную оптическую плотность облака и вычисляя время выпадения аэрозольных частиц заданных размеров и плотности, можно по номограмме дистанционно определить закон распределения частиц по размерам в аэрозольных облаках.

Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках, основанный на обработке оптического излучения, рассеянного аэрозолями облака, отличающийся тем, что в течение времени существования аэрозольного облака измеряют оптическую плотность облака, вычисляют нормированную оптическую плотность облака, измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме.
ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ
ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 210.
27.10.2015
№216.013.87d7

Способ оценки высот изотерм в конвективной облачности

Изобретение относится к области метеорологии и может быть использовано для определения высот изотерм в мощных конвективных облаках. Сущность: измеряют наименьшую радиационную температуру теплового излучения, уходящего от верхних участков облачного покрова, температуру воздуха у поверхности...
Тип: Изобретение
Номер охранного документа: 0002566378
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8aac

Система энергетического обеспечения воздушного судна

Изобретение относится к области авиации, в частности к энергосистемам летательных аппаратов. Система энергетического обеспечения воздушного судна содержит консоль несущей поверхности воздушного судна с устройством локализации перетекания воздушного потока в виде проточной гондолы. На нижней и...
Тип: Изобретение
Номер охранного документа: 0002567103
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8aae

Способ поражения объектов, прикрываемых аэрозольным образованием

Изобретение относится к вооружению, а именно к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольным образованием, заключается в доставке средств генерации ультразвуковых колебаний в район местонахождения аэрозольного образования (АО), прикрывающего...
Тип: Изобретение
Номер охранного документа: 0002567105
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ab2

Способ тягового заземления передвижных радиоэлектронных средств

Изобретение касается способа тягового заземления передвижных радиоэлектронных средств, основанного на выдвижении радиоэлектронного средства к месту развертывания, в соответствии с которым заземлитель, выполненный в форме ножа, шарнирно закрепленный через тягу к штоку гидроцилиндра...
Тип: Изобретение
Номер охранного документа: 0002567113
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8b17

Многочастотная антенная решетка с цифровой обработкой сигналов для определения координат радиолокационной цели

Изобретение относится к антенной технике и может быть использовано в радиолокационных станциях, предназначенных для обнаружения целей, определения дальности до цели и определения координат цели. Технический результат заключается в повышении точности определения координат цели за счет...
Тип: Изобретение
Номер охранного документа: 0002567214
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8b34

Способ идентификации воздушных целей

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Достигаемый технический результат изобретения - повышение вероятности правильной идентификации воздушных целей, обнаруженных бортовой радиолокационной станцией (РЛС) в...
Тип: Изобретение
Номер охранного документа: 0002567243
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d93

Способ пеленгования воздушного объекта

Изобретение относится к радиотехнике и может быть использовано для определения местоположения воздушных судов (объектов) по их радиоизлучениям. Достигаемый технический результат - повышение точности измерения угла места примерно на порядок с расширением области надежного определения дальности с...
Тип: Изобретение
Номер охранного документа: 0002567850
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d9b

Способ защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения

Изобретение относится к области защиты средств радиосвязи от управляемого оружия на основе самонаведения на источник радиоизлучения. Достигаемый технический результат - повышение эффективности защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения....
Тип: Изобретение
Номер охранного документа: 0002567858
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e58

Способ поражения объектов, прикрываемых аэрозольной завесой

Изобретение относится к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольной завесой, заключается в доставке средств генерации электроаэрозоля в район местонахождения аэрозольного образования (АО), прикрывающего объекты от поражения огневыми комплексами....
Тип: Изобретение
Номер охранного документа: 0002568049
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e91

Способ обнаружения мерцающей помехи с плавным изменением мощности сигнала

Изобретение относится к области радиолокации и может быть использовано для создания помехоустойчивых систем сопровождения (наведения). Достигаемый технический результат - повышение вероятности обнаружения воздействия мерцающей помехи с плавным изменением мощности сигнала на измеритель угловых...
Тип: Изобретение
Номер охранного документа: 0002568106
Дата охранного документа: 10.11.2015
Показаны записи 41-50 из 208.
27.10.2015
№216.013.8aac

Система энергетического обеспечения воздушного судна

Изобретение относится к области авиации, в частности к энергосистемам летательных аппаратов. Система энергетического обеспечения воздушного судна содержит консоль несущей поверхности воздушного судна с устройством локализации перетекания воздушного потока в виде проточной гондолы. На нижней и...
Тип: Изобретение
Номер охранного документа: 0002567103
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8aae

Способ поражения объектов, прикрываемых аэрозольным образованием

Изобретение относится к вооружению, а именно к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольным образованием, заключается в доставке средств генерации ультразвуковых колебаний в район местонахождения аэрозольного образования (АО), прикрывающего...
Тип: Изобретение
Номер охранного документа: 0002567105
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ab2

Способ тягового заземления передвижных радиоэлектронных средств

Изобретение касается способа тягового заземления передвижных радиоэлектронных средств, основанного на выдвижении радиоэлектронного средства к месту развертывания, в соответствии с которым заземлитель, выполненный в форме ножа, шарнирно закрепленный через тягу к штоку гидроцилиндра...
Тип: Изобретение
Номер охранного документа: 0002567113
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8b17

Многочастотная антенная решетка с цифровой обработкой сигналов для определения координат радиолокационной цели

Изобретение относится к антенной технике и может быть использовано в радиолокационных станциях, предназначенных для обнаружения целей, определения дальности до цели и определения координат цели. Технический результат заключается в повышении точности определения координат цели за счет...
Тип: Изобретение
Номер охранного документа: 0002567214
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8b34

Способ идентификации воздушных целей

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Достигаемый технический результат изобретения - повышение вероятности правильной идентификации воздушных целей, обнаруженных бортовой радиолокационной станцией (РЛС) в...
Тип: Изобретение
Номер охранного документа: 0002567243
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d93

Способ пеленгования воздушного объекта

Изобретение относится к радиотехнике и может быть использовано для определения местоположения воздушных судов (объектов) по их радиоизлучениям. Достигаемый технический результат - повышение точности измерения угла места примерно на порядок с расширением области надежного определения дальности с...
Тип: Изобретение
Номер охранного документа: 0002567850
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d9b

Способ защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения

Изобретение относится к области защиты средств радиосвязи от управляемого оружия на основе самонаведения на источник радиоизлучения. Достигаемый технический результат - повышение эффективности защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения....
Тип: Изобретение
Номер охранного документа: 0002567858
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e58

Способ поражения объектов, прикрываемых аэрозольной завесой

Изобретение относится к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольной завесой, заключается в доставке средств генерации электроаэрозоля в район местонахождения аэрозольного образования (АО), прикрывающего объекты от поражения огневыми комплексами....
Тип: Изобретение
Номер охранного документа: 0002568049
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e91

Способ обнаружения мерцающей помехи с плавным изменением мощности сигнала

Изобретение относится к области радиолокации и может быть использовано для создания помехоустойчивых систем сопровождения (наведения). Достигаемый технический результат - повышение вероятности обнаружения воздействия мерцающей помехи с плавным изменением мощности сигнала на измеритель угловых...
Тип: Изобретение
Номер охранного документа: 0002568106
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e92

Когерентно-импульсная радиолокационная станция

Изобретение предназначено для индивидуальной защиты радиолокационных комплексов обнаружения воздушных целей и управления оружием класса «земля-воздух» в условиях применения противником разведывательно-ударных комплексов типа ПЛСС (Precision Location Strike System - PLSS) с...
Тип: Изобретение
Номер охранного документа: 0002568107
Дата охранного документа: 10.11.2015
+ добавить свой РИД