×
13.01.2017
217.015.7266

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КИНЕТИНА В АЛЬГИНАТЕ НАТРИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологии, в частности к растениеводству, и может быть использовано для получения нанокапсул кинетина. Способ характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия при массовом соотношении ядро:оболочка, составляющем 1:1, или 1:3, или 5:1. При получении инкапсулируемых частиц методом осаждения нерастворителем порционно добавляют кинетин в суспензию альгината натрия в изопропаноле в присутствии Е472с с перемешиванием и медленно покапельно добавляют бутилхлорид в качестве осадителя, отфильтровывают суспензию, промывают бутилхлоридом и сушат. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 4 пр., 1 ил.

Изобретение относится к области нанотехнологии, в частности к растениеводству и косметике.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997 предложен способ получения твердых непористых микросфер, который включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения - получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2139046, МПК A61K 9/50, A61K 49/00, A61K 51/00, Российская Федерация, опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат.2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 Описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен - высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, T. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром - был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. WO/2009/148058 JP, МПК B01J 13/04, A23L 1/00, A61K 35/20, A61K 45/00, A61K 47/08), A61K 47/26, A61K 47/32, A61K 47/34, A61K 47/36, A61K 9/50, B01J 2/04, B01J 2/06, опубликован 10.12.2009 описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процесс производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.

Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.

В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.

Недостатком предложенного способа является сложность процесса, а отсюда низкий выход конечного продукта.

В пат. WO/2010/014011, NL, МПК A61K 9/50; B01J 13/02; A61K 9/50; B01J 3/02, опубликован 4.02.2010 описан способ получения микрокапсул диаметром от 0,1 мкм до 25 мкм, включающих ядро частицы диаметром 90 нм до 23 мкм, содержащее не менее 3% активного компонента по весу частицы; покрытие, которое полностью охватывает основные частицы, содержащие не менее 20% от веса гидрофобного полимера, выбранного из целлюлозных эфиров, сложных эфиров целлюлозы, шеллака, клейковины, полилактида, гидрофобных производных крахмала, поливинилацетата, полимеров или сополимеров на основе эфира акриловой кислоты и/или метакриловой кислоты эфир и их комбинации. Активный компонент не высвобождается при введении в водосодержащие продукты питания, напитки, пищевые или фармацевтические композиции. После приема внутрь, однако, активный компонент выделяется быстро.

Недостатками данного способа являются сложность, длительность процесса, а также применение ультразвука и специального оборудования, использование в качестве оболочек микрокапсул сополимеров акриловой или метакриловой кислоты, которые способны вызывать раковые опухоли.

В пат. WO/2010/119041, ЕР, МПК A23L 1/00, опубликован 21.10.2010 предложен способ получения микрошариков, сожержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионного полисахарида с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, приостановление процесса фильтрация осуществляется через множество фильтров с постепенным снижением размера пор. В идеале фильтр тонкой очистки имеет субмикронные размеры пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), пролучение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/003805, ЕР, МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314, МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138, US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030, US, МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).

В пат. WO/2011/104526, GB, МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.

В пат. WO/2011/056935, US, МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воски, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/160733, ЕР, МПК B01J 13/16, опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/161229, ЕР, МПК A61K 8/11; B01J 13/14; B01J 13/16; C11D 3/50, опубликован 29.12.2011 описан способ получения микрокапсул, содержащих оболочку из полимочевины и духов в масле, где оболочка получается в результате реакции двух структурно различных диизоцианатов в виде эмульсии. В процессе получения микрокапсул используются защитные коллоиды. Во время реакции изоцианатов и аминов должен присутствовать защитный коллоид. Это предпочтительно поливинилпирролидон (ПВП). Защитный коллоид - полимерная система, которая в суспензии или дисперсии предотвращает слипание (агломерация, коагуляции, флокуляции). При данном способе может быть использован для духов и всевозможных потребительских товаров. Исчерпывающий перечень потребительских товаров не может быть перечислен. Наглядные примеры потребительских товаров включают в себя все приложения, включая жидкие моющие средства и порошковые моющие средства; все предметы личной гигиены и ухода за волосами, включая шампуни, кондиционеры, кремы для расчесывания, стайлинг-крем, мыло, кремы для тела и т.п.; дезодоранты и антиперспиранты.

Недостатками данного способа получения микрокапсул являются сложность и длительность процесса, использование в качестве оболочки микрокапсул диизоцианатов, которые получают в результате реакции двух изоцианатов.

В пат. WO/2012/007438 ЕР МПК A61K 8/11; A61Q 13/00; B01J 13/16; B01J 3/18 опубликован 19.01.2012 описан способ получения частиц со средним диаметром менее 50 микрон, состоящих по крайней мере из одной оболочки, методом ступенчатой полимеризации с участием мономера изоцианата. По крайней мере одна оболочка образована цепной реакцией полимеризации роста (желательно свободно-радикальной полимеризации), которая не связана с изоцианатом. Изобретение также относится к способу получения таких частиц, в которых оболочка формируется до цепного роста полимеризации при температуре, при которой цепная реакция роста подавляется. Изобретение также обеспечивает полностью сформулированные продукты, предпочтительно жидкости и гели, которые содержат указанные частицы.

Недостатками предложенного способа являются сложность и длительность процесса, получение микрокапсул химическим методом ступенчатой полимеризации. Получаемые данным способом частицы имеют достаточно большой размер - 50 мкм.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул водораствормых сельскохозяйственных препаратов группы цитокининов в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул кинетина, характеризующимся тем, что в качестве оболочки микрокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бутилхлорида.

Результатом предлагаемого метода являются получение нанокапсул кинетина в альгинате натрия в течение 15 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1 Получение нанокапсул кинетина в соотношение ядро:облолочка 1:3

К 1,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка кинетина по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 5 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают бутилхлоридом и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул кинетина в соотношение ядро:облолочка 1:1

К 0,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка кинетина по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают бутилхлоридом и сушат.

Получено 0,92 г белого порошка. Выход составил 92%.

ПРИМЕР 3 Получение нанокапсул кинетина в соотношение ядро:блолочка 5:1

К 0,1 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка кинетина по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают бутилхлоридом и сушат.

Получено 0,6 г белого порошка. Выход составил 100%.

Способ получения нанокапсул кинетина, характеризующийся тем, что в качестве оболочки нанокапсул используют альгинат натрия при массовом соотношении ядро:оболочка, составляющем 1:1, или 1:3, или 5:1, при получении инкапсулируемых частиц методом осаждения нерастворителем порционно добавляют кинетин в суспензию альгината натрия в изопропаноле в присутствии Е472с с перемешиванием и медленно покапельно добавляют бутилхлорид в качестве осадителя, отфильтровывают суспензию, промывают бутилхлоридом и сушат.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КИНЕТИНА В АЛЬГИНАТЕ НАТРИЯ
Источник поступления информации: Роспатент

Показаны записи 581-590 из 673.
27.04.2019
№219.017.3bf5

Способ производства хлеба, содержащего наноструктурированный розмарин

Изобретение относится к пищевой промышленности. Способ производства хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе...
Тип: Изобретение
Номер охранного документа: 0002685861
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3c37

Способ получения нанокапсул сухого экстракта копеечника

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование в качестве ядра...
Тип: Изобретение
Номер охранного документа: 0002686064
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3c40

Способ получения нанокапсул сухого экстракта гуараны

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта гуараны характеризуется тем, что сухой экстракт гуараны добавляют в суспензию альгината натрия в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002686062
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3c95

Способ получения нанокапсул сухого экстракта шалфея

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта шалфея характеризуется тем, что сухой экстракт шалфея добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002686058
Дата охранного документа: 24.04.2019
02.05.2019
№219.017.48b1

Способ получения нанокапсул сухого экстракта бадана

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта бадана характеризуется тем, что сухой экстракт бадана добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002686683
Дата охранного документа: 30.04.2019
24.05.2019
№219.017.5ea4

Способ получения нанокапсул ципрофлоксацина гидрохлорида в конжаковой камеди

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул ципрофлоксацина гидрохлорида в оболочке из конжаковой камеди. Способ характеризуется тем, что в суспензию конжаковой камеди в бензоле и 0,01 г препарата Е472с...
Тип: Изобретение
Номер охранного документа: 0002688670
Дата охранного документа: 22.05.2019
29.05.2019
№219.017.62f9

Способ получения нанокапсул экоцида в каррагинане

Изобретение относится к области нанотехнологии, ветеринарии. Способ получения нанокапсул экоцида в каррагинане характеризуется тем, что экоцид по порциям добавляют в суспензию каррагинана в бензоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002688148
Дата охранного документа: 20.05.2019
29.05.2019
№219.017.6303

Способ получения нанокапсул экоцида в конжаковой камеди

Изобретение относится в области нанотехнологии, ветеринарии. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование экоцида и оболочки нанокапсул в...
Тип: Изобретение
Номер охранного документа: 0002688146
Дата охранного документа: 20.05.2019
29.05.2019
№219.017.6354

Способ получения нанокапсул l-метионина в альгинате натрия

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул L-метионина в оболочке из альгината натрия. Способ характеризуется тем, что L-метионин добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г...
Тип: Изобретение
Номер охранного документа: 0002688153
Дата охранного документа: 20.05.2019
07.06.2019
№219.017.7540

Способ получения нанокапсул сухого экстракта левзеи

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта левзеи характеризуется тем, что сухой экстракт левзеи добавляют в суспензию каппа-каррагинана в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002690661
Дата охранного документа: 05.06.2019
Показаны записи 581-590 из 687.
19.07.2019
№219.017.b64a

Способ получения нанокапсул доксициклина в гуаровой камеди

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул доксициклина характеризуется тем, что в суспензию гуаровой камеди в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок...
Тип: Изобретение
Номер охранного документа: 0002694776
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b683

Способ получения нанокапсул сухого экстракта хвоща в каппа-каррагинане

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта хвоща характеризуется тем, что сухой экстракт хвоща добавляют в суспензию каппа-каррагинана в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002694821
Дата охранного документа: 17.07.2019
19.07.2019
№219.017.b6ad

Способ получения нанокапсул сухого экстракта красной щетки

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта красной щетки характеризуется тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - сухой экстракт красной щетки, при этом сухой...
Тип: Изобретение
Номер охранного документа: 0002694823
Дата охранного документа: 17.07.2019
26.07.2019
№219.017.b95c

Способ получения нанокапсул сухого экстракта стевии

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта стевии в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт стевии добавляют в суспензию альгината натрия в гексане в...
Тип: Изобретение
Номер охранного документа: 0002695618
Дата охранного документа: 24.07.2019
27.07.2019
№219.017.b9a1

Способ получения нанокапсул сухого экстракта шалфея

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта шалфея характеризуется тем, что сухой экстракт шалфея добавляют в суспензию альгината натрия в толуоле в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002695666
Дата охранного документа: 25.07.2019
27.07.2019
№219.017.b9a9

Способ получения нанокапсул солей металлов в геллановой камеди

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул солей металлов в оболочке из геллановой камеди. Способ характеризуется тем, что соль металла добавляют в суспензию геллановой камеди в толуоле, содержащую препарат...
Тип: Изобретение
Номер охранного документа: 0002695668
Дата охранного документа: 25.07.2019
27.07.2019
№219.017.ba11

Способ производства хлеба, содержащий наноструктурированный l-аргинин

Изобретение относится к хлебобулочной промышленности и предусматривает использование нано-технологий в производстве хлеба. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение,...
Тип: Изобретение
Номер охранного документа: 0002695677
Дата охранного документа: 25.07.2019
08.08.2019
№219.017.bd15

Способ получения нанокапсул витамина рр (николинамида)

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул витамина РР в альгинате натрия характеризуется тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - витамин РР при массовом соотношении ядро:оболочка 1:3, или...
Тип: Изобретение
Номер охранного документа: 0002696771
Дата охранного документа: 06.08.2019
15.08.2019
№219.017.bfc8

Способ получения нанокапсул этилнитрата

Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул этилнитрата. Способ характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - этилнитрат, при этом этилнитрат медленно добавляют в суспензию каппа-каррагинана...
Тип: Изобретение
Номер охранного документа: 0002697252
Дата охранного документа: 13.08.2019
15.08.2019
№219.017.bfd0

Способ получения нанокапсул тринитротолуола

Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул тринитротолуола. Способ характеризуется тем, что в качестве оболочки нанокапсул используют гуаровую камедь, а в качестве ядра - тринитротолуол, при этом тринитротолуол медленно добавляют в суспензию...
Тип: Изобретение
Номер охранного документа: 0002697253
Дата охранного документа: 13.08.2019
+ добавить свой РИД