×
13.01.2017
217.015.7266

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КИНЕТИНА В АЛЬГИНАТЕ НАТРИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологии, в частности к растениеводству, и может быть использовано для получения нанокапсул кинетина. Способ характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия при массовом соотношении ядро:оболочка, составляющем 1:1, или 1:3, или 5:1. При получении инкапсулируемых частиц методом осаждения нерастворителем порционно добавляют кинетин в суспензию альгината натрия в изопропаноле в присутствии Е472с с перемешиванием и медленно покапельно добавляют бутилхлорид в качестве осадителя, отфильтровывают суспензию, промывают бутилхлоридом и сушат. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 4 пр., 1 ил.

Изобретение относится к области нанотехнологии, в частности к растениеводству и косметике.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997 предложен способ получения твердых непористых микросфер, который включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения - получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2139046, МПК A61K 9/50, A61K 49/00, A61K 51/00, Российская Федерация, опубликован 10.10.1999 предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.

Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.

В пат.2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 Описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен - высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, T. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром - был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. WO/2009/148058 JP, МПК B01J 13/04, A23L 1/00, A61K 35/20, A61K 45/00, A61K 47/08), A61K 47/26, A61K 47/32, A61K 47/34, A61K 47/36, A61K 9/50, B01J 2/04, B01J 2/06, опубликован 10.12.2009 описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процесс производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.

Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.

В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.

Недостатком предложенного способа является сложность процесса, а отсюда низкий выход конечного продукта.

В пат. WO/2010/014011, NL, МПК A61K 9/50; B01J 13/02; A61K 9/50; B01J 3/02, опубликован 4.02.2010 описан способ получения микрокапсул диаметром от 0,1 мкм до 25 мкм, включающих ядро частицы диаметром 90 нм до 23 мкм, содержащее не менее 3% активного компонента по весу частицы; покрытие, которое полностью охватывает основные частицы, содержащие не менее 20% от веса гидрофобного полимера, выбранного из целлюлозных эфиров, сложных эфиров целлюлозы, шеллака, клейковины, полилактида, гидрофобных производных крахмала, поливинилацетата, полимеров или сополимеров на основе эфира акриловой кислоты и/или метакриловой кислоты эфир и их комбинации. Активный компонент не высвобождается при введении в водосодержащие продукты питания, напитки, пищевые или фармацевтические композиции. После приема внутрь, однако, активный компонент выделяется быстро.

Недостатками данного способа являются сложность, длительность процесса, а также применение ультразвука и специального оборудования, использование в качестве оболочек микрокапсул сополимеров акриловой или метакриловой кислоты, которые способны вызывать раковые опухоли.

В пат. WO/2010/119041, ЕР, МПК A23L 1/00, опубликован 21.10.2010 предложен способ получения микрошариков, сожержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионного полисахарида с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, приостановление процесса фильтрация осуществляется через множество фильтров с постепенным снижением размера пор. В идеале фильтр тонкой очистки имеет субмикронные размеры пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), пролучение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. WO/2011/003805, ЕР, МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314, МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/150138, US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.

Недостатками данного способа являются сложность исполнения и длительность процесса.

В пат. WO/2011/127030, US, МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011 предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).

В пат. WO/2011/104526, GB, МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011 предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых изделий по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.

Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.

В пат. WO/2011/056935, US, МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50, опубликован 12.05.2011 описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонатов, полиэфиров, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воски, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/160733, ЕР, МПК B01J 13/16, опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2011/161229, ЕР, МПК A61K 8/11; B01J 13/14; B01J 13/16; C11D 3/50, опубликован 29.12.2011 описан способ получения микрокапсул, содержащих оболочку из полимочевины и духов в масле, где оболочка получается в результате реакции двух структурно различных диизоцианатов в виде эмульсии. В процессе получения микрокапсул используются защитные коллоиды. Во время реакции изоцианатов и аминов должен присутствовать защитный коллоид. Это предпочтительно поливинилпирролидон (ПВП). Защитный коллоид - полимерная система, которая в суспензии или дисперсии предотвращает слипание (агломерация, коагуляции, флокуляции). При данном способе может быть использован для духов и всевозможных потребительских товаров. Исчерпывающий перечень потребительских товаров не может быть перечислен. Наглядные примеры потребительских товаров включают в себя все приложения, включая жидкие моющие средства и порошковые моющие средства; все предметы личной гигиены и ухода за волосами, включая шампуни, кондиционеры, кремы для расчесывания, стайлинг-крем, мыло, кремы для тела и т.п.; дезодоранты и антиперспиранты.

Недостатками данного способа получения микрокапсул являются сложность и длительность процесса, использование в качестве оболочки микрокапсул диизоцианатов, которые получают в результате реакции двух изоцианатов.

В пат. WO/2012/007438 ЕР МПК A61K 8/11; A61Q 13/00; B01J 13/16; B01J 3/18 опубликован 19.01.2012 описан способ получения частиц со средним диаметром менее 50 микрон, состоящих по крайней мере из одной оболочки, методом ступенчатой полимеризации с участием мономера изоцианата. По крайней мере одна оболочка образована цепной реакцией полимеризации роста (желательно свободно-радикальной полимеризации), которая не связана с изоцианатом. Изобретение также относится к способу получения таких частиц, в которых оболочка формируется до цепного роста полимеризации при температуре, при которой цепная реакция роста подавляется. Изобретение также обеспечивает полностью сформулированные продукты, предпочтительно жидкости и гели, которые содержат указанные частицы.

Недостатками предложенного способа являются сложность и длительность процесса, получение микрокапсул химическим методом ступенчатой полимеризации. Получаемые данным способом частицы имеют достаточно большой размер - 50 мкм.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул водораствормых сельскохозяйственных препаратов группы цитокининов в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул кинетина, характеризующимся тем, что в качестве оболочки микрокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бутилхлорида.

Результатом предлагаемого метода являются получение нанокапсул кинетина в альгинате натрия в течение 15 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1 Получение нанокапсул кинетина в соотношение ядро:облолочка 1:3

К 1,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка кинетина по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 5 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают бутилхлоридом и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул кинетина в соотношение ядро:облолочка 1:1

К 0,5 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка кинетина по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают бутилхлоридом и сушат.

Получено 0,92 г белого порошка. Выход составил 92%.

ПРИМЕР 3 Получение нанокапсул кинетина в соотношение ядро:блолочка 5:1

К 0,1 г альгината натрия в изопропаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка кинетина по порциям добавляют в суспензию альгината натрия в изопропаноле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают бутилхлоридом и сушат.

Получено 0,6 г белого порошка. Выход составил 100%.

Способ получения нанокапсул кинетина, характеризующийся тем, что в качестве оболочки нанокапсул используют альгинат натрия при массовом соотношении ядро:оболочка, составляющем 1:1, или 1:3, или 5:1, при получении инкапсулируемых частиц методом осаждения нерастворителем порционно добавляют кинетин в суспензию альгината натрия в изопропаноле в присутствии Е472с с перемешиванием и медленно покапельно добавляют бутилхлорид в качестве осадителя, отфильтровывают суспензию, промывают бутилхлоридом и сушат.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КИНЕТИНА В АЛЬГИНАТЕ НАТРИЯ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 673.
25.08.2017
№217.015.98eb

Способ получения нанокапсул лекарственных препаратов группы пенициллинов в альгинате натрия

Изобретение относится к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из ампициллина, натриевой соли бензилпенициллина или амоксициллина. Указанный способ характеризуется тем, что к 0,5 г альгината натрия в петролейном эфире добавляют 0,01 г препарата...
Тип: Изобретение
Номер охранного документа: 0002609824
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.98ef

Способ получения нанокапсул смеси биопага-д с бриллиантовой зеленью

Изобретение относится к способу получения нанокапсул смеси биопага-Д с бриллиантовой зеленью. Указанный способ характеризуется тем, что к 2,5 г биопага-Д прибавляют 2,5 мл бриллиантовой зелени, полученную смесь добавляют в суспензию 2,5 г или 7,5 г натрий карбоксиметилцеллюлозы в петролейном...
Тип: Изобретение
Номер охранного документа: 0002609826
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.9955

Способ получения нанокапсул аминогликозидных антибиотиков в геллановой камеди

Изобретение относится к способу получения нанокапсул аминогликозидного антибиотика, выбранного из канамицина, амикацина или сульфата гентамицина. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом аминогликозидный антибиотик...
Тип: Изобретение
Номер охранного документа: 0002609740
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.999d

Способ получения нанокапсул резвератрола в геллановой камеди

Изобретение относится к способу получения нанокапсул резвератрола. Указанный способ характеризуется тем, что резвератрол добавляют в суспензию геллановой камеди в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной...
Тип: Изобретение
Номер охранного документа: 0002609739
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.9a1c

Способ получения нанокапсул вакцины "кс" от чумы свиней в натрий карбоксиметилцеллюлозе

Изобретение относится к способу получения нанокапсул вакцины «КС» от чумы свиней. Указанный способ характеризуется тем, что вакцину «КС» растворяют в петролейном эфире, затем диспергируют в суспензию натрий карбоксиметилцеллюлозы в петролейном эфире в присутствии препарата Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002609741
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.9a58

Способ получения нанокапсул ципрофлоксацина гидрохлорида

Изобретение относится к способу получения нанокапсул ципрофлоксацина гидрохлорида. Указанный способ характеризуется тем, что в суспензию геллановой камеди в бутаноле и 0,01 г препарата Е472с добавляют порошок ципрофлоксацина гидрохлорида, затем добавляют хлороформ, полученную суспензию...
Тип: Изобретение
Номер охранного документа: 0002609742
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.9a7a

Способ получения нанокапсул антибиотиков тетрациклинового ряда

Изобретение относится к способу получения нанокапсул. Описан способ получения нанокапсул антибиотиков тетрациклинового ряда – тетрациклина, диоксициклина или миноциклина. В качестве оболочки нанокапсул используют каррагинан. Указанный способ характеризуется тем, что антибиотик добавляют в...
Тип: Изобретение
Номер охранного документа: 0002609825
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a03b

Способ получения нанокапсул ауксинов

Изобретение относится к способу получения нанокапсул. Описан способ получения нанокапсул ауксинов. В качестве оболочки нанокапсул используют агар-агар. Указанный способ характеризуется тем, что ауксин добавляют в суспензию агар-агара в бутаноле в присутствии сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002606590
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a12a

Способ получения нанокапсул танина

Изобретение относится к способу получения нанокапсул танина. Указанный способ характеризуется тем, что 1 г танина добавляют в суспензию 1 г низкоэтерифицированного яблочного пектина в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот...
Тип: Изобретение
Номер охранного документа: 0002606589
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a185

Способ получения нанокапсул сухого экстракта шпината

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе. Способ включает диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии E472c...
Тип: Изобретение
Номер охранного документа: 0002606854
Дата охранного документа: 10.01.2017
Показаны записи 301-310 из 687.
25.08.2017
№217.015.b40e

Способ получения нанокапсул лекарственных растений, обладающих седативным действием

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения нанокапсул лекарственных растений, обладающих седативным действием, характеризующийся тем, что настойки валерьяны, пустырника или пиона уклоняющегося добавляют в суспензию натрий...
Тип: Изобретение
Номер охранного документа: 0002613761
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b426

Способ получения нанокапсул сухого экстракта шиповника

Изобретение относится в области нанотехнологии, ветеринарной и пищевой промышленности. Способ получения нанокапсул сухого экстракта шиповника, при этом в качестве оболочки нанокапсул используется конжаковая камедь, сухой экстракт шиповника диспергируют в суспензию конжаковой камеди в бутаноле в...
Тип: Изобретение
Номер охранного документа: 0002613881
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b606

Способ получения нанокапсул бетулина

Изобретение относится к области нанотехнологии, сельского хозяйства и пищевой промышленности. Способ получения нанокапсул бетулина, при этом 100 мг порошка бетулина диспергируют в суспензию 300 мг конжаковой камеди в этаноле, в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин,...
Тип: Изобретение
Номер охранного документа: 0002614713
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b728

Способ получения нанокапсул розувастатина в каррагинане

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию каррагинана в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем...
Тип: Изобретение
Номер охранного документа: 0002614734
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b8f1

Способ получения нанокапсул розувостатина в альгинате натрия

Изобретение относится к области нанотехнологии, медицины и фармацевтике. Способ получения нанокапсул розувостатина осуществляют следующим образом. Розувостатин медленно добавляют в суспензию альгината натрия в гексане в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/сек. Далее...
Тип: Изобретение
Номер охранного документа: 0002615366
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bd34

Способ получения кефира, обогащенного коэнзимом q

Изобретение относится к молочной промышленности и нанотехнологии. В получаемый продукт в процессе заквашивания вводят наноструктурированную добавку, включающую коэнзим Q в альгинате натрия или наноструктурированную добавку, включающую коэнзим Q в каррагинане, или наноструктурированную добавку...
Тип: Изобретение
Номер охранного документа: 0002616277
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c045

Способ получения нанокапсул витаминов группы в в геллановой камеди

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул витаминов группы В. Способ характеризуется тем, что в качестве оболочки используется геллановая камедь, при этом витамин группы В добавляют в суспензию геллановой...
Тип: Изобретение
Номер охранного документа: 0002616514
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c097

Способ получения нанокапсул унаби в конжаковой камеди

Изобретение относится к области нанотехнологии, ветеринарии и пищевой промышленности. Способ получения нанокапсул унаби в конжаковой камеди, в котором порошок ягод унаби диспергируют в суспензию конжаковой камеди в этаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного...
Тип: Изобретение
Номер охранного документа: 0002616502
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c589

Способ получения нанокапсул витаминов группы в в каппа-каррагинане

Изобретение относится к способу получения нанокапсул витаминов группы B в каппа-каррагинане. Указанный способ характеризуется тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин...
Тип: Изобретение
Номер охранного документа: 0002618449
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c58e

Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане

Изобретение относится к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из ампициллина, бензилпенициллина натриевой соли или амоксициллина, в каррагинане. Указанный способ характеризуется тем, что к 0,5 г каррагинана в гексане добавляют 0,01 г препарата...
Тип: Изобретение
Номер охранного документа: 0002618453
Дата охранного документа: 03.05.2017
+ добавить свой РИД