×
13.01.2017
217.015.71d4

СПОСОБ ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу гидроочистки нефтяных фракций с содержанием серы в сырье 1,18-2,08 мас.%, который может быть использован в нефтеперерабатывающей промышленности. Способ заключается в контактировании сырья с массивным сульфидным катализатором в виде нанопорошка, полученного из товарных сульфида молибдена и кобальта или никеля методом механохимической активации при соотношении компонентов, мас.%: 7-10:1, при температуре 330°С, соотношении водорода к сырью 300-350:1 и давлении 2,5-3,0 МПа. Способ позволяет достичь глубокой очистки нефтяных фракций при исключении образования огромного количества сточных вод, содержащих окислы азота, анионы хлора, катионы тяжелых металлов и кислотных реагентов. 1 з.п. ф-лы, 2 ил., 2 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам гидроочистки нефтяных дистиллятных фракций в присутствии катализаторов и водорода и может быть использовано в нефтеперерабатывающей промышленности.

Многолетние научные исследования и практический опыт в области нефтепереработки показывают, что наиболее глубокое гидрообессеривание прямогонных топливных фракций достигается при температуре 300-390°С, давлении водорода 10-100 ати, в присутствии Co(Ni)Mo(W)-S/Al2O3 - сульфидных каталитических систем [Климов О.В. // Нефтегазовый журнал 2013. №3. С. 71-75. Способ гидрообработки углеводородного сырья]. Определяющее влияние на эффективность протекания процесса оказывают давление водорода и активность катализатора, которая, в свою очередь, определяется условиями активирования предсульфидного предшественника [Р.К. Насиров, С.А. Дианова, Н.А. Ковальчук, И.Р. Насиров. Предсульфидирование катализаторов гидроочистки // «Химия и технология топлив и масел», 1998, №6, с. 19-22].

Вопросам определения оптимальных условий активирования катализаторов гидроочистки посредством сульфидирования оксидных прекурсоров посвящено большое количество разработок, так как именно на этой стадии формируется активная сульфидная фаза, которая определяет гидродесульфирующую способность каталитической системы. Процесс сульфидирования катализаторов может осуществляться в каталитическом реакторе либо вне его с использованием сульфидирующих агентов и водорода. В качестве сульфидирующих агентов применяют газовую смесь сероводорода и водорода, а также сырье в смеси с осерняющим соединением (например, диалкилсульфидами, алкилмеркаптанами), элементную серу и др.

Среди предложенных вариантов использования различных серосодержащих соединений, являющихся источником образования сероводорода, необходимого для активирования предсульфидного катализатора, наиболее приемлемы и привлекательны варианты использования элементной серы, которую загружают совместно с катализатором в виде одного или нескольких чередующихся слоев. При температуре 113°С сера плавится, проникает в поры носителя, надежно закрепляясь в них при последующем охлаждении. Последующая подача в атмосферу реактора водородсодержащего газа обеспечивает гидрирование адсорбированной серы с образованием в качестве основного продукта сероводорода, который, в свою очередь, вступает во взаимодействие с катализатором с образованием сульфидов металлов [Патент RU 2293107. Способ гидроочистки нефтяных фракций].

Например, описан способ гидрооблагораживания дизельного топлива при повышенных температуре и давлении, в котором первый слой окисного алюмокобальтмолибденового катализатора дополнительно содержит серу. После первого слоя продукт гидроочистки последовательно контактирует со вторым слоем окисного алюмокобальтмолибденового катализатора, а также и с третьим слоем окисного алюмоникельмолибденового катализатора (средний радиус пор 80-370) при массовом соотношении первого, второго и третьего слоев 0,3-0,1:0,2-0,3:0,5-0,6 соответственно. Причем процесс гидроочистки дизельного топлива проводят с предварительным осернением каталитических слоев в среде водородсодержащего газа при 350-400°С [Патент RU 2024587. Способ гидрооблагораживания дизельного топлива].

Также предложен способ получения экологобезопасного дизельного топлива (температура начала кипения не ниже 170°С, а конец кипения не выше 370°С) с содержанием серы и ароматических углеводородов не более 0,05 мас.% и 20 об.% соответственно путем гидроочистки нефтяных фракций в присутствии алюмокобальт- и алюмоникельмолибденовых катализаторов. Фракцию с температурой начала кипения не выше 300°С сначала подвергают гидроочистке с использованием каталитической системы, состоящей из 10-50 мас.% алюмоникельмолибденового катализатора, предварительно активированного этилмеркаптаном, взятом в количестве 10-20% от общей массы каталитической системы, с получением продукта 1, фракцию с температурой начала кипения не ниже 300°С подвергают гидроочистке с использованием каталитической системы, состоящей из 10-40 мас.% алюмокобальтмолибденового катализатора, активированного элементарной серой, взятой в количестве 5-20 мас.% от общей массы каталитической системы, с получением продукта 2, с последующим компаундированием получаемых продуктов в соотношении продукт 1:продукт 2, равном 3-4:2-1. [Патент RU 2024587. Способ получения экологобезопасного дизельного топлива].

Аналогичный по сути, но усовершенствованный по исполнению, известный способ [Патент RU №2185242, МПК7 B01J 37/20, C10G 45/08, опубл. 20.07.2002] реализуют путем контакта сырья с предсульфидированным катализатором, содержащим кобальт, молибден, фосфор и бор, предварительно нанесенные на оксид алюминия, при повышенных температуре и давлении. При этом процесс активации катализатора происходит ступенчато. Элементную серу, загруженную послойно, в количестве 1,0-2,5% от массы катализатора, нагревают до 120-140°С, затем обрабатывая весь слой катализатора водородсодержащим газом при температуре 150-175°С, а затем и дизельным топливом при температуре 250-330°С.

Общим недостатком перечисленных способов является тот факт, что процесс сульфидирования, осуществляемый непосредственно в каталитическом реакторе, сопряжен, прежде всего, со сравнительно низкой степенью конверсии сернистых соединений, а также коррозией технологического оборудования, неполным использованием рабочего объема реактора, продолжительным временем вывода установки на режим, низким уровнем контроля стадий сульфидирования оксидов Мо и промотора.

Наиболее близким к заявляемому способу гидроочистки дизельных фракций (Прототип) является известный способ гидроочистки нефтяных фракций [Патент RU 2293107. Способ гидроочистки нефтяных фракций], который реализуется путем осуществления контакта сырья с предсульфидированным катализатором, содержащим кобальт, молибден, фосфор и бор, нанесенные на оксид алюминия, при повышенных температуре и давлении, причем процесс осуществляют при температуре 320-340°С, давлении 3,0-5,0 МПа, объемной скорости подачи сырья 1,0-6,0 ч-1, соотношении ВСГ (водородсодержащий газ):сырье 500-1000 н.об./об. сырья, в присутствии катализатора, сульфидированного вне каталитического реактора газообразным сероводородом при температуре 80-500°С и объемной скорости подачи сероводорода 0,02-6,0 ч-1; катализатор дополнительно включает оксид лантана при следующем соотношении компонентов, мас.%: MoS2 8,0-17,0; Co3S2 1,5-4,0; P2O3 2,5-5,0; B2O3 0,3-1,0; La2O3 1,0-5,0; оксид алюминия - остальное.

Недостатком способа по Прототипу является его эффективность только для низкосернистой дизельной фракции (исходное содержание серы не выше 0,55%), недостаточно глубокая степень гидрообессеривания (содержание остаточной серы в продукте 700 ррм или 0.07%), необходимость использования газообразного сероводорода, а также водных растворов солей реагентов и водного аммиака при синтезе оксидных прекурсоров катализатора. Способ гидроочистки по Прототипу осложняет и многоступенчатость процесса синтеза катализатора, которая обусловлена необходимостью реализации цепочки химических превращений - водные растворы солей металлов → высаживание солей, формовка в гранулы - с привлечением дополнительных стадий сушки, прокалки и сульфидирования. Анализ ключевых моментов по Прототипу и по Изобретению показывает, что общим признаком известного и заявляемого способов гидроочистки нефтяных фракций является выполнение процесса гидроочистки дизельной фракции с использованием сульфидной каталитической системы и водорода.

Задача настоящего Изобретения заключается в разработке экологически чистого способа глубокой гидроочистки дизельных фракций с повышенным содержанием серы (более 1 мас.%). Указанная задача решена за счет усовершенствования технологии собственно процесса гидроочистки, а также использования новых высокоактивных катализаторов.

Способ гидроочистки нефтяных фракций с содержанием серы 1,18-2,08 мас.% путем контактирования сырья с катализатором на основе молибдена и кобальта отличается тем, что процесс осуществляют при температуре 300-320°С, при соотношении водорода к сырью 300-350:1, давлении 2,5-3,0 МПа, в присутствии массивного сульфидного катализатора в виде нанопорошка, полученного из товарных сульфида молибдена и кобальта или никеля методом механохимической активации при соотношении компонентов, мас.%: 7-10:1. Слой катализатора расположен между вспомогательными слоями карбида кремния и псевдобемита нановолокнистой структуры, полученного из электровзрывного нитрида алюминия.

Технический результат изобретения состоит:

- в упрощении технологического процесса гидроочистки,

- в снижении рабочего давления,

- в достижении ультранизкого уровня остаточной серы в гидродесульфуризатах,

- в упрощении способа синтеза катализатора - синтез реализуется в одну стадию, исключается образование огромного количества сточных вод, содержащих окислы азота, анионы хлора, катионы тяжелых металлов и кислотных реагентов,

- в отсутствии энерго- и ресурсозатратной стадии активирования катализатора с использованием водорода и токсичного сероводорода.

Отличительными признаками в заявляемом способе являются (табл. 1):

- рабочее давление процесса гидроочистки 3,0 МПа;

- катализатор эффективен для дизельной фракции с высоким содержанием серы в интервале 1,18-2,08% (у Прототипа - 0,55%);

- уровень остаточной серы в гидрогенизатах ниже по сравнению с Прототипом более чем в 25 раз;

- катализатор содержит не 6 компонентов, а только два, и это - коммерческие продукты - порошки MoS2 и Со (или Ni);

- синтез катализатора не требует использования водных растворов реагентов, кислотных добавок и дополнительных стадий (высаживания, сушки, прокаливания, пропитки, сульфидирования),

- сокращается время приготовления катализатора (4 и 8 часов против более 24 часов по Прототипу),

- катализатор используют не в виде гранул, а в виде наноразмерного порошка;

- основные и промежуточные слои катализатора в реакторе формируют иным образом, не как по Прототипу.

Примеры конкретного выполнения.

Пример 1. Катализатор из крупнодисперсных коммерческих порошков состава 1.0 г порошка кобальта (например, марки ПК-1у) + 7.0 г дисульфида молибдена (например, марки ДМИ-7) готовят следующим образом. В ступку вибромельницы загружают порошок кобальта и дисульфида молибдена (соотношение порошка кобальта и дисульфида молибдена 1:7), количество порошка в одной загрузке - суммарно 8 г, масса шаров 200 г. Из ступки с шарами и порошком откачивается воздух до уровня 10-5 Торр, затем ступка укрепляется на раме, которая вибрирует с частотой 16 Гц и амплитудой 2 мм. Время активации 8 часов. Затем камеру заполняют Ar, катализатор выгружают и помещают в реактор проточной установки. Получают нанопорошковый катализатор со средним размером частиц 50 нм (фиг. 1). В дальнейшем катализатор не подвергают гранулированию.

Процесс гидрогенолиза реализуют для дизельной фракции (ДФ) с содержанием серы 2,08% на проточной стендовой установке высокого давления, которая моделирует промышленный процесс (КАТАКОН, Новосибирск), в реакторе объемом 15 см3 при температуре 330°С, давлении 3,0 МПа, объемной скорости подачи сырья 3 ч-1, объемном соотношении Н2:сырье как 300-350:1. Движение потока дизельной фракции осуществляют сверху реактора, в нижней его части размещают карбид кремния (марки 53С F40 ГОСТ 52381; V=3,0 см3), затем первый слой псевдобемита AlOOH нановолокнистой структуры (фиг. 2), полученного из электровзрывного нитрида алюминия (V=3,0 см3; производитель ООО «Передовые порошковые технологии», г. Томск), слой собственно катализатора (навеска 5,0 г; V=5 см3), а затем второй слой псевдобемита (V=1,0 см3; производитель ООО «Передовые порошковые технологии», г. Томск; Лернер М.И., Сваровская Н.В., Псахье С.Г. Российские нанотехнологии. 2009. Т 4. №9. С. 6-18) и последний слой - карбида кремния (V=3,0 см3). Использование вспомогательных слоев карбида кремния и псевдобемита предназначено для предотвращения уноса нанодисперсных частиц катализатора, а также обеспечения равномерного распределения сырья по поперечному сечению реактора для сохранения постоянства объемной скорости подачи сырья. Анализ проб гидрогенизата на остаточное содержание серы осуществляют после выхода установки на режим (через 1,5-2,0 часа).

Эффективность способа процесса гидроочистки и активность катализаторов по Изобретению оценивают по величине остаточного содержания серы в гидрогенизатах. Условия и результаты испытаний по Изобретению и Прототипу представлены в табл. 1 и табл. 2. Их сопоставление обнаруживает выигрышные тенденции в изменении технологических параметров процесса гидроочистки (температура, давление процесса, скорость подачи сырья, соотношение водород:сырье, табл. 1) при переходе от Прототипа к Изобретению, а также упрощение процедуры приготовления катализаторов (табл. 2).

Пример 2. Катализатор готовят, как в Примере 1, только соотношение порошковых компонентов Со и MoS2 составляет 1:10.

Пример 3. Катализатор по составу, как в Примере 2, только вместо Со взят порошок Ni, то есть соотношение порошковых компонентов Ni (например, марки ПНЭ-1) и MoS2 составляет 1:10, а время их сочетания в условиях механообработки осуществляют в течение 4 часов.

Пример 4. Катализатор по составу, как в Примере 1, только вместо прямогонной дизельной фракции Рязанского НПЗ с содержанием серы 2,08% взята дизельная фракция того же НПЗ, но с более низким исходным содержанием серы - 1,18%.

Таким образом, предлагаемый способ эффективен для дизельных фракций с высоким исходным содержанием серы 1,18-2,08%. Синтез катализаторов по предлагаемому способу гидроочистки прост, реализуется в твердой фазе в одну стадию, без использования водных растворов солей, кислотных реагентов, исключает активирование каталитической системы с привлечением водорода и токсичного сероводорода.


СПОСОБ ГИДРООЧИСТКИ ДИЗЕЛЬНЫХ ФРАКЦИЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 51.
27.03.2013
№216.012.30b5

Цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c-c и метанола в высокооктановый бензин и ароматические углеводороды

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности и к созданию катализаторов, используемых в переработке алифатических углеводородов С-С и метанола в высокооктановый бензин и ароматические углеводороды. Описан цеолитсодержащий катализатор для превращения...
Тип: Изобретение
Номер охранного документа: 0002478007
Дата охранного документа: 27.03.2013
27.04.2013
№216.012.3981

Цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности и посвящено созданию катализаторов, используемых в переработке низкооктановых бензиновых фракций различного происхождения в высокооктановый бензин. Описан цеолитсодержащий катализатор для превращения...
Тип: Изобретение
Номер охранного документа: 0002480282
Дата охранного документа: 27.04.2013
27.08.2013
№216.012.6456

Деэмульгатор для разрушения водонефтяных эмульсий

Изобретение относится к подготовке нефти и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности на стадии подготовки нефти к ее транспортировке и переработке для разделения водонефтяных эмульсий. Изобретение касается деэмульгатора, представляющего собой наноразмерный...
Тип: Изобретение
Номер охранного документа: 0002491323
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.6f56

Способ термомагнитной обработки анизотропных магнитомягких материалов

Изобретение относится к области металлургии, в частности к термомагнитной обработке магнитомягких материалов. Для улучшения магнитных характеристик холоднокатаной рулонной анизотропной электротехнической стали осуществляют высокотемпературный отжиг, выдержку, охлаждение до комнатной температуры...
Тип: Изобретение
Номер охранного документа: 0002494153
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c0

Катализатор гидроочистки дизельных фракций

Изобретение относится к области катализа. Описан катализатор гидроочистки дизельных фракций, содержащий дисульфид молибдена, кобальт, никель или железо, псевдобемит γ-AlOOH, полученный из электровзрывного нитрида алюминия, который в качестве модифицирующей добавки содержит наноалмазы размером...
Тип: Изобретение
Номер охранного документа: 0002496574
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78ce

Способ защиты грунтов от эрозии и создания зеленого покрытия

Изобретение относится к охране окружающей среды. Способ осуществляют путем обработки грунта водным раствором поливинилового спирта, в который вводят минеральные или органические удобрения. Добавляют семена многолетних трав или хвойных растений и смешивают с грунтом. Замораживают при...
Тип: Изобретение
Номер охранного документа: 0002496588
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b10

Способ модуляции оптического излучения

Изобретение относится к области оптоэлектроники, в частности к модуляции интенсивности оптического излучения. Способ модуляции оптического излучения предусматривает подачу видимого естественного света в диапазоне длин волн от 350 до 850 нанометров под углом от 5 град. до 75 град. между...
Тип: Изобретение
Номер охранного документа: 0002497166
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8c65

Способ осадки цилиндрических заготовок из хрупких и малопластичных материалов

Изобретение относится к обработке металлов давлением и может быть использовано при осадке цилиндрических заготовок из хрупких и малопластичных материалов. Обойму размещают на поверхности выталкивателя в отверстии матрицы с зазором от 0,1 до 0,2 мм. Обойма может быть выполнена разъемной....
Тип: Изобретение
Номер охранного документа: 0002501624
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.949f

Способ модификации поверхности титана

Изобретение относится к области металлургии, а именно к механико-термической обработке металлов и сплавов, и может быть использовано в машиностроительной, авиационной и других областях промышленности, а также в медицинской технике. Способ модификации поверхности титана оксидированием включает...
Тип: Изобретение
Номер охранного документа: 0002503741
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9b63

Способ получения манганита лантана, легированного кальцием

Изобретение относится к технологии получения новых соединений с высокими значениями магнитосопротивления и может быть использовано в химической промышленности, микроэлектронике, для создания магниторезистивных датчиков в криогенной и космической магнитометрии. Манганит лантана, легированный...
Тип: Изобретение
Номер охранного документа: 0002505485
Дата охранного документа: 27.01.2014
Показаны записи 1-10 из 44.
27.04.2013
№216.012.3981

Цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности и посвящено созданию катализаторов, используемых в переработке низкооктановых бензиновых фракций различного происхождения в высокооктановый бензин. Описан цеолитсодержащий катализатор для превращения...
Тип: Изобретение
Номер охранного документа: 0002480282
Дата охранного документа: 27.04.2013
27.08.2013
№216.012.6456

Деэмульгатор для разрушения водонефтяных эмульсий

Изобретение относится к подготовке нефти и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности на стадии подготовки нефти к ее транспортировке и переработке для разделения водонефтяных эмульсий. Изобретение касается деэмульгатора, представляющего собой наноразмерный...
Тип: Изобретение
Номер охранного документа: 0002491323
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.6f56

Способ термомагнитной обработки анизотропных магнитомягких материалов

Изобретение относится к области металлургии, в частности к термомагнитной обработке магнитомягких материалов. Для улучшения магнитных характеристик холоднокатаной рулонной анизотропной электротехнической стали осуществляют высокотемпературный отжиг, выдержку, охлаждение до комнатной температуры...
Тип: Изобретение
Номер охранного документа: 0002494153
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c0

Катализатор гидроочистки дизельных фракций

Изобретение относится к области катализа. Описан катализатор гидроочистки дизельных фракций, содержащий дисульфид молибдена, кобальт, никель или железо, псевдобемит γ-AlOOH, полученный из электровзрывного нитрида алюминия, который в качестве модифицирующей добавки содержит наноалмазы размером...
Тип: Изобретение
Номер охранного документа: 0002496574
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78ce

Способ защиты грунтов от эрозии и создания зеленого покрытия

Изобретение относится к охране окружающей среды. Способ осуществляют путем обработки грунта водным раствором поливинилового спирта, в который вводят минеральные или органические удобрения. Добавляют семена многолетних трав или хвойных растений и смешивают с грунтом. Замораживают при...
Тип: Изобретение
Номер охранного документа: 0002496588
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b10

Способ модуляции оптического излучения

Изобретение относится к области оптоэлектроники, в частности к модуляции интенсивности оптического излучения. Способ модуляции оптического излучения предусматривает подачу видимого естественного света в диапазоне длин волн от 350 до 850 нанометров под углом от 5 град. до 75 град. между...
Тип: Изобретение
Номер охранного документа: 0002497166
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8c65

Способ осадки цилиндрических заготовок из хрупких и малопластичных материалов

Изобретение относится к обработке металлов давлением и может быть использовано при осадке цилиндрических заготовок из хрупких и малопластичных материалов. Обойму размещают на поверхности выталкивателя в отверстии матрицы с зазором от 0,1 до 0,2 мм. Обойма может быть выполнена разъемной....
Тип: Изобретение
Номер охранного документа: 0002501624
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.949f

Способ модификации поверхности титана

Изобретение относится к области металлургии, а именно к механико-термической обработке металлов и сплавов, и может быть использовано в машиностроительной, авиационной и других областях промышленности, а также в медицинской технике. Способ модификации поверхности титана оксидированием включает...
Тип: Изобретение
Номер охранного документа: 0002503741
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9b63

Способ получения манганита лантана, легированного кальцием

Изобретение относится к технологии получения новых соединений с высокими значениями магнитосопротивления и может быть использовано в химической промышленности, микроэлектронике, для создания магниторезистивных датчиков в криогенной и космической магнитометрии. Манганит лантана, легированный...
Тип: Изобретение
Номер охранного документа: 0002505485
Дата охранного документа: 27.01.2014
27.06.2014
№216.012.d5a7

Сорбент для очистки водных сред от мышьяка и способ его получения

Изобретение относится к сорбентам для очистки воды от мышьяка. Сорбент для очистки водных сред от мышьяка содержит нанофазный оксигидроксид, выделенный из отходов станций обезжелезивания подземных вод, водорастворимый полимер и глицерин. В качестве водорастворимого полимера сорбент содержит...
Тип: Изобретение
Номер охранного документа: 0002520473
Дата охранного документа: 27.06.2014
+ добавить свой РИД