×
13.01.2017
217.015.70c9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕРМОСТОЙКОГО РАДИОПРОЗРАЧНОГО МАТЕРИАЛА (ИЗДЕЛИЯ) НА ОСНОВЕ ФОСФАТНОГО СВЯЗУЮЩЕГО И КВАРЦЕВОЙ ТКАНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения высокотермостойких радиопрозрачных материалов. Технический результат изобретения заключается в защите стеклоткани от термодеструкции, обеспечении диэлектрических и прочностных характеристик материала в режимах одностороннего нагрева до 1200°C при скорости 100 град./с и выше и возможности получения сложнопрофильных изделий без разрушения армирующей сетки. Осуществляют аппретирование кварцевой ткани кремнийорганической смолой, пропитку смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, выкладку на жесткой оправке пакета с заданным количеством слоев кварцевой ткани. На поверхность набранного пакета наносят слой толщиной 0,5-5,0 мм из смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм, при этом количество твердой фазы в водном шликере кварцевого стекла равно процентному составу кварцевой ткани в пакете. Отверждают и прессуют одновременно с откачкой паров воды и летучих, термообрабатывают при температуре 350±5°C в течение 1-2 ч. Далее проводят пропитку смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1,0 мкм и кремнезоля в пропорции 1:1, сушат и термообрабатывают при температуре 350±5°C в течение 1-2 ч. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к области получения высокотермостойких радиопрозрачных материалов - неорганических стеклопластиков, предназначенных для изготовления радиопрозрачных и теплозащитных изделий авиационной и ракетно-космической техники, работающих в режиме одностороннего нагрева (радиопрозрачные окна, антенные обтекатели высокоскоростных ракет и др.).

Известны способы получения радиопрозрачных высокотермостойких стеклопластиков и стеклотекстолитов, изделий из них с применением кварцевой или высококремнеземной ткани и неорганической фосфатной связки.

В патенте РФ №2076086, кл. C04B 35/80, от 27.03.1997 г. предложена композиция для изготовления высокотемпературного электроизоляционного стеклотекстолита, включающая стеклоткань с содержанием SiO2 не менее 98%, аппретированную 15% раствором кремнийорганической смолы КМ-9К, алюмофосфатное связующее с молярным соотношением P2O5/Al2O3 в пределах 3,0-3,2 и порошок оксида алюминия с содержанием α-Al2O3 не менее 98% с зернистостью М5-М20 в количестве 56 вес.ч. Для изготовления изделия проводили выкладку пакета на прессформе и прессование при давлении 10 кгс/см2 и температуре 270°C с выдержкой из расчета 10-12 мин на 1 мм толщины изделия. Недостатком композиции является снижение электросопротивления и ухудшение диэлектрических характеристик, начиная с температуры 500°C.

Наиболее близким к заявленному изобретению является способ получения радиотехнического материала по патенту РФ №2220930, кл. C04B 35/80, 28/34 от 10.01.2004 г. (прототип), где в качестве армирующего наполнителя выбрана кварцевая или кремнеземная стеклоткань, аппретированная 3-7% спиртовым раствором кремнийорганической смолы КМ-9К, а композицией для пропитки ткани служит смесь хромалюмофосфатной связки ХАФС-3 и электроплавленного корундового порошка в пропорции 1:1. Отверждение осуществляется под прессом при давлении 0,95-1,05 МПа и подъеме температуры до 270°C со скоростью 17-18 град./час.

Преимуществом прототипа перед аналогом является то, что в качестве фосфатного связующего взята хромалюмофосфатная связка ХАФС-3 со сравнительно низким мольным отношением Р2О5/(0,6Al2O3+0,4Cr2O3)=2,26, что делает ее менее агрессивной к разъеданию армирующего наполнителя. Положительным является и выбор менее концентрированного раствора кремнийорганической смолы КМ-9К при нанесении аппретирующего слоя, составляющего всего 3-7% (в аналоге 15%).

Однако прототип имеет ряд существенных недостатков.

При нагреве до температур выше 500-600°C органополимерный аппрет деструктирует с выделением углерода, который, оседая на пористой структуре материала, ухудшает его радиотехнические характеристики, а при высокоскоростном одностороннем нагреве до температур 1000-1300°C наружные слои стеклопакета и разрушаются и отслаиваются, что связано со взрывным характером пиролиза органополимера при свободном доступе кислорода.

Кроме того, одним из отрицательных факторов при получении материалов по предложенной в прототипе технологии является сохранение в структуре материала значительного количества паров воды из фосфатной связки и летучих из кремнийорганической смолы, аппретирующей кварцевое стекловолокно, что снижает влагостойкость и другие свойства материала.

Решение этой проблемы можно обеспечить своевременным отсосом паров из собранного пакета при нагреве в области температур 50-300°C.

Задачами, решаемыми настоящим изобретением, являются:

- обеспечение диэлектрических и прочностных характеристик неорганического стеклопластика на основе кварцевой ткани и фосфатного связующего в режимах одностороннего нагрева при температуре наружной поверхности 1200°C и скорости нагрева 100 град./с и выше;

- обеспечение возможности получения сложнопрофильных изделий с точными размерами по толщине и профилю за счет механической обработки без разрушения армирующей стеклоткани.

Поставленная задача достигается тем, что:

1. Способ получения высокотермостойкого радиопрозрачного композиционного материала (изделия) на основе фосфатного связующего и кварцевой ткани, включающий аппретирование кварцевой ткани кремнийорганической смолой, пропитку смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, прессование и отверждение, отличающийся тем, что после пропитки кварцевой ткани смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка проводят выкладку на жесткой оправке пакета с заданным количеством слоев кварцевой ткани, наносят слой толщиной 0,5-5,0 мм из смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм, при этом количество твердой фазы в водном шликере кварцевого стекла равно процентному составу кварцевой ткани в пакете, отверждение и прессование проводят одновременно с откачкой паров воды и летучих, термообрабатывают при температуре 350±5°C в течение 1-2 часов, пропитывают смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и кремнезоля в пропорции 1:1, сушат и термообрабатывают при температуре 350±5°С в течение 1-2 часа.

2. Способ по п. 1, отличающийся тем, что водный шликер кварцевого стекла содержит измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы в количестве 5-10% по твердой фазе.

Основным преимуществом предложенного способа получения радиопрозрачного материала на основе фосфатного связующего и кварцевой ткани для изделий, работающих в режиме одностороннего нагрева, является нанесение на поверхность набранного пакета материала (изделия) керамического слоя толщиной 0,5-5,0 мм с низкой теплопроводностью (0,3-0,5 Вт/м2).

Слой выполняет несколько функций:

- защищает стеклоткань от термодеструкции кремнийорганического аппрета и тем самым сохраняет прочностные и диэлектрические характеристики материала;

- позволяет проводить механическую обработку изделий и таким образом получать с большой точностью профиль и толщину стенки заготовки до заданной, не повреждая армирующую ткань; обеспечивает возможность получения аэродинамически гладкой и ровной наружной поверхности изделия.

Вторым важным преимуществом способа получения материала (изделий) на основе фосфатного связующего и кварцевой ткани является снижение кислотности получаемого материала за счет пропитки его смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм, рН которого составляет 4-6 единиц и щелочного кремнезоля, например, КЗ-ТМ-30 ТУ 2145-008-61801487-2010 с рН=10 единиц в пропорции 1:1 с последующей термообработкой. Материал имеет нейтральную реакцию и хорошо взаимодействует с металлами, органопластами и др. Кроме того, увеличение температурной области термообработки материала до 350±5°C (в прототипе и аналоге 270±5°C) приводит к полному переводу фосфатов в водостойкую форму и повышает влагоустойчивость материала (изделия).

Толщина керамического слоя 0,5-5,0 мм определялась требованиями по теплозащите органополимера на кварцевой ткани и допуском на мехобработку по толщине изделия.

Область температур 300-350°C выбрана исходя из сохранения свойств материала на основе хромалюмофосфатного связующего. При более высокой температуре идет деструкция аппрета и ухудшение диэлектрических свойств, более низкая температура (менее 300°C) не обеспечивает окончательную поликонденсацию алюмохромфосфатной связки и ее влагостойкость.

Водный шликер кварцевого стекла содержит измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы в количестве 5-10% по твердой фазе. Такая величина обеспечивает перемешивание суспензии и упрощает нанесение слоя.

Предлагаемый способ получения радиопрозрачного материала и изделий на его основе включает в себя следующие технологические этапы:

- аппретирование кварцевой ткани и стекловолокна кремнийорганической смолой;

- приготовление неорганического связующего на основе хромалюмофосфатной связки и тонкодисперсного корундового порошка;

- нанесение на аппретированную кварцевую ткань неорганического связующего и сборка пакета на жесткой оправке из заданного количества слоев ткани;

- приготовление керамической массы на основе того же неорганического связующего и водного шликера кварцевого стекла, нанесение ее на поверхность набранного пакета;

- отверждение и прессование материала (изделия) проводят одновременно с откачкой паров воды и летучих;

- термообработку материала (изделия) при температуре 350±5°C в течение 1-2 часов;

- пропитку материала (изделия) по всей поверхности смесью отстоя шликера кварцевого стекла и кремнезоля;

- сушку при комнатной температуре;

- термообработку при температуре 350±5°C в течение 1-2 часов.

В качестве волокнистого наполнителя выбрана кварцевая ткань ТС 8/3-К-ТО, ТУ 6-48-112-94, обладающая хорошими диэлектрическими характеристиками, высокой термостойкостью. Ткань аппретировалась путем окунания (ручной способ) или прогонкой через ванну со спиртовым раствором кремнийорганической смолы КМ-9К, ТУ 1-596-490-2012 концентрации 3-7% в течение 2-3 минут на пропиточной машине и сушки в сушильных шкафах при температуре 30-60°C. Контроль качества аппретирования производился по привесу после сушки - он должен составлять 5-10%.

В качестве неорганического связующего использовали хромалюмофосфатную связку ФОСКОН 351 ТУ 2149-150-10964029-01, которую тщательно перемешивали в шаровой мельнице с порошковым наполнителем из электрокорунда зернистостью 3-20 мкм ТУ 3988-075-00224450-99 в пропорции 1:1.

Нанесение связующего на стеклоткань осуществляли как при помощи пропиточной машины с валиками, так и ручным способом путем промазывания ткани с обеих сторон шпателем и выравнивания резиновым валиком. Для ускорения процесса при экспериментальной проработке способа на сложнопрофильных изделиях нанесение связующего осуществляли непосредственно на заготовки ткани при наборе стеклопакета на жесткой оправке. Выравнивание слоя связки после укладки каждого слоя кварцевой ткани осуществлялся при помощи устройства для нанесения покрытий по авторскому свидетельству СССР №1426661, кл. B05C 17/02 от 30.09.1988 г.

После набора пакета с заданным количеством слоев кварцевой ткани, пропитанной смесью хромалюмофосфатной связки и тонкодисперсного корундового порошка, наносят керамический слой толщиной 0,5-5,0 мм методом напыления (тонкий), кистью, шпателем и валиком (толстый). Смесь из хромалюмофосфатной связки и водного шликера кварцевого стекла представляет собой суспензию, полученную методом мокрого помола в шаровой мельнице до тонины 0,1-500 мкм. Такой зерновой состав водного шликера с содержаним мелких и более крупных частиц обеспечивает после термообработки целостность полученного керамического слоя. Водный шликер вводился в хромалюмофосфатное связующее в количестве по твердой фазе равном процентному количеству кварцевой ткани в пакете (20-30%) и перемешивался в шаровой мельнице в течение не менее 1-2 часа. Для регулирования и подбора формовочных свойств водного шликера и хромалюмофосфатной связки в суспензию может вводиться дистиллированная вода или сухой порошок кварцевого стекла того же зернового состава.

Дополнительно с целью снижения теплопроводности керамического слоя в кварцевый шликер можно вводить измельченное кварцевое стекловолокно длиной до 500 мкм или полые стеклянные микросферы, например, марки МС-8 в количестве 5-10% по твердой фазе. Смесь перемешивается в шаровой мельнице с небольшим количеством шаров (10%) в течение 1-2 ч.

Прессование и отверждение материала (изделий) осуществлялось одновременно с откачкой паров воды и летучих при медленном нагреве (Et=10 град./час) при температуре 50-300°C и давлении до 1 атм, затем производили термообработку при температуре 350±5°C в течение 1-2 часов.

С целью нейтрализации кислотности и одновременно дополнительного упрочнения заготовки материала (изделия) пропитывали смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и щелочного кремнезоля КЗ-ТМ-30 в пропорции 1:1 с последующей сушкой и термообработкой при температуре 350±5°C в течение 1-2 часов. Эту операцию можно выполнять или послойным (3 раза) нанесением раствора кистью или окунанием с последующей сушкой при комнатной температуре или в сушильном шкафу. Впитывание смеси осуществляется за счет пористости неорганического стеклопластика и полученного керамического слоя. Отстой получали длительной выдержкой (5-10 суток) водного шликера кварцевого стекла с плотностью 1,75-1,85 г/см3 в закрытой емкости и слива верхнего слоя.

В дальнейшем материал (изделие) обрабатывали на соответствующих станках (плоскошлифовальных, токарных) связанным абразивным инструментом до заданных толщин керамического слоя. На изделия можно наносить различные лакокрасочные покрытия, крепить к металлическим, органокомпозиционным или керамическим деталям.

Примеры конкретного выполнения изобретения.

Пример 1. На кварцевую ткань ТС 8/3-К-ТО, аппретированную 3-7% спирто-ацетоновым раствором кремнийорганической смолы КМ-9К, наносили смесь, состоящую из 65 мас. % связующего Фоскон-351 и 35 мас. % порошкового наполнителя из электрокорунда с зернистостью 3-20 мкм. Проводили сборку пакета с заданным количеством слоев на жесткой оправке, наносили смесь из хромалюмофосфатной связки и водного шликера кварцевого стекла полидисперсного состава от 0,1 до 500 мкм в количестве по твердой фазе, равном процентному количеству кварцевой ткани в пакете. Отверждали и прессовали одновременно с откачкой паров воды и летучих при температуре до 300°C, термообрабатывали при 350±5°C в течение 1-2 часов. Охлаждали до комнатной температуры, проводили пропитку материала (изделия) смесью отстоя водного шликера кварцевого стекла с размером частиц не более 1 мкм и кремнезоля КЗ-ТМ-30 в пропорции 1:1, подвергали сушке и термообработке при температуре 350±5°C в течение 1-2 часов.

Пример 2. Пример 2 осуществляли аналогично примеру 1, толщина слоя смеси хромалюмофосфатного связующего и водного шликера кварцевого стекла составляла 5,0 мм.

Пример 3. Пример 3 осуществляли аналогично примеру 1, толщина слоя смеси хромалюмофосфатного связующего и водного шликера составляла 2,5 мм, в кварцевый шликер вводили измельченное кварцевое стекловолокно длиной до 500 мкм в количестве 5-10% по твердой фазе, смесь перемешивали в шаровой мельнице с небольшим количеством шаров (10%) в течение 1-2 ч.

Полученные экспериментальные данные приведены в таблице.

Изготовленные по этому способу образцы материала и изделия в виде плоских панелей и конических оболочек прошли испытания на термоциклирование от -60°C до +300°C в количестве 15 теплосмен и по режимам одностороннего нагрева до температуры наружной поверхности 1200°C и скорости нагрева на отдельных участках до 100 град./с. Диэлектрические свойства материала после проведения тепловых испытаний остались на уровне допустимых. Диэлектрическая проницаемость и тангенс угла диэлектрических потерь на частоте 1010 Гц до испытаний 3,07 и 0,006, после испытаний 3,21 и 0,016. Прочность материала на основе хромалюмофосфатной связке после испытаний не изменилась.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 144.
13.01.2017
№217.015.7941

Способ тепловых испытаний обтекателей ракет из неметаллических материалов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает зонный нагрев наружной поверхности изделия за счет контакта с нагревателем. Распределение температуры...
Тип: Изобретение
Номер охранного документа: 0002599460
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.869f

Способ формования изделий из композиционного материала

Изобретение относится к способу формования изделий из композиционного материала. Техническим результатом является снижение трудоемкости, энергоемкости и сокращение производственного цикла изготовления изделия. Технический результат достигается способом формования изделий из композиционного...
Тип: Изобретение
Номер охранного документа: 0002603798
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8d25

Способ изготовления изделий из стеклокерамики литийалюмосиликатного состава

Изобретение относится к производству керамических изделий радиотехнического назначения. Технический результат изобретения заключается в повышении качества изделий из стеклокерамики литийалюмосиликатного состава. Измельчают аморфное стекло мокрым способом до получения водного шликера, формуют...
Тип: Изобретение
Номер охранного документа: 0002604611
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d83

Радиопрозрачное защитное покрытие изделий из керамики, ситалла, стеклокерамики и способ его получения

Изобретение относится к технологии получения керамических и стеклокерамических изделий, работающих в условиях высоких тепловых и силовых нагрузок при одностороннем нагреве. Предложен состав и способ получения радиопрозрачных, ударопрочных защитных покрытий для изделий радиотехнического...
Тип: Изобретение
Номер охранного документа: 0002604541
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b82

Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного...
Тип: Изобретение
Номер охранного документа: 0002610048
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.a04f

Способ закрепления датчика измерения перемещения и деформации на объекте

Изобретение относится к измерению деформаций и может быть использовано при испытаниях изделий из хрупких материалов, например керамических обтекателей. Сущность: датчик измерения перемещения и деформации крепится жестким клеем на сухой поверхности односторонней липкой ленты с жесткой основой,...
Тип: Изобретение
Номер охранного документа: 0002606517
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b7e1

Способ контроля прочности керамических оболочек типа тел вращения

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и...
Тип: Изобретение
Номер охранного документа: 0002614920
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c23d

Образец для определения модуля упругости и предела прочности высокомодульных углепластиков при сдвиге в плоскости листа

Изобретение относится к испытательной технике, а именно к образцам, и позволяет испытывать полимерные композиционные материалы (ПКМ) на сдвиг в плоскости листа, а точнее высокомодульные углепластики, с укладкой слоев под углом ±45°. Испытательный образец для определения модуля упругости и...
Тип: Изобретение
Номер охранного документа: 0002617776
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c943

Способ изготовления стеклокерамического материала кордиеритового состава

Изобретение относится к производству высокотермостойких радиопрозрачных стеклокерамических материалов, используемых в изделиях радиотехнического назначения. Технический результат – упрощение технологического процесса получения стеклокерамического материала. Способ включает измельчение стекла...
Тип: Изобретение
Номер охранного документа: 0002619570
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.cdff

Способ испытания керамических оболочек обтекателей

Изобретение относится к испытательной технике и может быть использовано для оценки и исследования прочности керамических оболочек при наземных испытаниях в составе обтекателей. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь...
Тип: Изобретение
Номер охранного документа: 0002620782
Дата охранного документа: 29.05.2017
Показаны записи 21-30 из 79.
13.01.2017
№217.015.772f

Способ изготовления композитного элемента жесткости

Изобретение относится к композитным структурам, в частности к технологиям усиления композиционных элементов жесткости, и может применяться в области авиастроения и космической техники. Способ изготовления композитного элемента жесткости включает формирование из препрега пары компонентов, каждый...
Тип: Изобретение
Номер охранного документа: 0002599661
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7941

Способ тепловых испытаний обтекателей ракет из неметаллических материалов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов. Заявленный способ включает зонный нагрев наружной поверхности изделия за счет контакта с нагревателем. Распределение температуры...
Тип: Изобретение
Номер охранного документа: 0002599460
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.869f

Способ формования изделий из композиционного материала

Изобретение относится к способу формования изделий из композиционного материала. Техническим результатом является снижение трудоемкости, энергоемкости и сокращение производственного цикла изготовления изделия. Технический результат достигается способом формования изделий из композиционного...
Тип: Изобретение
Номер охранного документа: 0002603798
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8be3

Способ разборки узла клеемеханического байонетного соединения металлических деталей

Изобретение относится к разборке узла клеемеханического байонетного соединения металлических деталей. Одну из деталей узла байонетного соединения жестко закрепляют на опоре. Затем узел байонетного соединения помещают в индуктор для его нагрева переменным магнитным полем средней частоты до...
Тип: Изобретение
Номер охранного документа: 0002604557
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d25

Способ изготовления изделий из стеклокерамики литийалюмосиликатного состава

Изобретение относится к производству керамических изделий радиотехнического назначения. Технический результат изобретения заключается в повышении качества изделий из стеклокерамики литийалюмосиликатного состава. Измельчают аморфное стекло мокрым способом до получения водного шликера, формуют...
Тип: Изобретение
Номер охранного документа: 0002604611
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d83

Радиопрозрачное защитное покрытие изделий из керамики, ситалла, стеклокерамики и способ его получения

Изобретение относится к технологии получения керамических и стеклокерамических изделий, работающих в условиях высоких тепловых и силовых нагрузок при одностороннем нагреве. Предложен состав и способ получения радиопрозрачных, ударопрочных защитных покрытий для изделий радиотехнического...
Тип: Изобретение
Номер охранного документа: 0002604541
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9227

Нагревательный элемент

Изобретение относится к нагревательным элементам. Нагревательный элемент содержит токоподводы и четное число последовательно соединенных коаксиально размещенных нагревательных труб, соединенных перемычками. Внутренняя нагревательная труба связана с одним токоподводом посредством разрезного...
Тип: Изобретение
Номер охранного документа: 0002605887
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9b82

Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного...
Тип: Изобретение
Номер охранного документа: 0002610048
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.a04f

Способ закрепления датчика измерения перемещения и деформации на объекте

Изобретение относится к измерению деформаций и может быть использовано при испытаниях изделий из хрупких материалов, например керамических обтекателей. Сущность: датчик измерения перемещения и деформации крепится жестким клеем на сухой поверхности односторонней липкой ленты с жесткой основой,...
Тип: Изобретение
Номер охранного документа: 0002606517
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b7e1

Способ контроля прочности керамических оболочек типа тел вращения

Изобретение относится к испытательной технике и может быть использовано для контроля и исследования прочности керамических оболочек типа тел вращения. Сущность: осуществляют приложение статической нагрузки с помощью камеры из эластичного материала, помещенной внутрь испытуемой оболочки и...
Тип: Изобретение
Номер охранного документа: 0002614920
Дата охранного документа: 30.03.2017
+ добавить свой РИД