×
13.01.2017
217.015.707c

Результат интеллектуальной деятельности: МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм содержит, ат.%: Cu 20-25, Fe 5, Al 10, Sm 0,5-1, Zr - остальное. Способ получения в условиях низкого вакуума сплава на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм характеризуется тем, что осуществляют загрузку в тигель из оксида циркония меди, железа, алюминия, самария и циркония чистотой 99,9%, размещают тигель в индукционной печи и осуществляют плавку при остаточном давлении 10-10 торр с последующей разливкой расплава при температуре 1100-1200°C в медную изложницу под давлением аргона. Получают сплав на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм в условиях низкого вакуума с применением неинертных тиглей из диоксида циркония. Сплав характеризуется высокими значениями прочности и пластичности. 2 н.п. ф-лы, 12 ил., 3 пр.

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления объемных металлических стекол на основе циркония.

Одним из перспективных конструкционных материалов являются объемные металлические стекла (ОМС) благодаря высокой прочности и большой упругой деформации. Наибольшей стеклообразующей способностью обладают ОМС на основе палладия (A. Inoue с сотрудниками был получен цилиндрический образец диаметром 80 мм с полностью аморфной структурой), однако дорогая стоимость палладия не позволяет широкое применение таких сплавов. Еще одной перспективной системой легирования является система Zr-Cu (были получены отливки с полностью аморфной структурой диаметром до 30 мм). Однако ввиду сильной активности циркония для приготовления таких сплавов предъявляются высокие требования к условиям изготовления сплавов (высокий вакуум, инертные тигли и др.). В настоящем патенте предлагается способ получения ОМС на основе циркония с использованием тигля из оксида циркония и в условиях низкого вакуума.

В промышленности известен ряд способов изготовления ОМС на основе циркония. В патенте CN 101012534 (опубл. 08.08.2007) говорится об аморфном сплаве Zr50-xAl10Cu40REx, в котором RE представляет Y, La, Ce, Nd, Gd, Dy, Но, Er, Tm, Lu и X (0<X⇐10). Преимущество сплава заключается в том, что он имеет высокую прочность на разрыв и не содержит вредных для организма металлов, таких как Ni, Be. Недостаток данного материала заключается в том, что для его производства необходимо применять дорогостоящее оборудование, а именно индукционную печь с глубоким вакуумом 5×10-3 Па.

В патенте US 20110097237 А1 (опубл. 28.04.2011) описывается ОМС с формулой (ZraAlbCucNid)100-e-fYeMf,, где a, b, c, и d - атомные доли: 0.472<а<0.568; 0.09<b<0.11; 0.27<с<0.33; 0.072<d<0.088 и сумма a, b, c, и d равна 1. М - один из металлов Nb, Та, Sc. Недостатком данного изобретения является наличие в составе материала дорогостоящего скандия и бионесовместимого никеля.

В патенте WO 2011057552 А1 (опубл. 19.05.2011) говорится об аморфном сплаве (ZraMbNc)100-xQx, в котором М представляет собой по меньшей мере один переходный металл, за исключением Zr; N является Be или Al; В выбран из группы, состоящей из CaO, MgO, Y2O3, Nd2O3 и их соединений; a, b и с - это атомные проценты соответствующих элементов; и 45<а<75, 20<b<40, 1<с<25, a+b+с=100 и 1<x<15. Плавку производят в глубоком вакууме, при температуре на 100°C выше температуры плавления. Недостатком данного изобретения является необходимость использования высокого вакуума, а также наличие в составе токсичного бериллия.

В патенте CN 101619425 А (опубл. 20.04.2011) говорится об изобретении аморфного сплава на основе циркония системы Zr-Cu-Ni-Al-Nb, где 66-72% Zr, 7.0-10.0% Ni, 3,0-7,0% Nb, 16.0-10% Al. Пластичность увеличивается при добавлении Nb, и при комнатной температуре достигает 7% (на сжатие). Сплав имеет хорошую коррозионную стойкость при температурах до 300-400°C. Недостатком этого изобретения является присутствие в составе материала никеля, способного вызывать аллергическую реакцию.

В патенте US 5803996 А (08.09.1998) говорится о получение аморфного сплава на основе циркония в форме стержня методом литья под давлением. Формула сплава Zr100-a-b-cAaBbCc, где А обозначает один или несколько элементов, выбранных из Ti, Hf, Al и Ga, В обозначает один или несколько элементов, выбранных из Fe, Со, Ni и Cu, С обозначает один или несколько элементов, выбранных из Pd, Pt, Au и Ag, а=5-20, b=15-45, с=10 и a+b+c=30-70. Недостатком данного изобретения является присутствие в составе материала благородных дорогостоящих металлов - Pd, Pt, Au и Ag.

В патенте US 5032196 А (опубл. 16.07.1991) говорится о получении аморфного сплава, имеющего превосходную обрабатываемость состава XaMbAle, где X-Zr, Ni, М - один из металлов Cu, Fe, Co. Аморфная фаза присутствует более 50% от общего объема. В патенте предлагается получать ОМС на основе Zr с использованием материалов низкой чистоты при низком вакууме с небольшим количеством иттрия.

Из документа CN 1958831 (опубл. 09.05.2007) известно, что в сплавах на основе Cu-Zr при добавлении алюминия и одного из следующих металлов: Y, La, Се, Pr, Nd, Gd, Tb, Dy, Ho, Er, Ti, Ag, Ga, Hf, Та, Nb, Ni, Co или Fe повышается стеклообразующая способность, снижается критическая скорость охлаждения и увеличивается критический диаметр слитка.

В патенте CN 103695814А (опубл. 02.04.2014) говорится о материале состава ZraCubAlcMdEre, где 40≤а≤70, 15≤b≤35, 5≤с≤15 и 5≤d≤15, и 0<е≤2.5, a+в+c+d+e=100, а М - один из элементов Ni, Fe, Со, Mn, Cr, Ti, Hf, Та, Nb. Недостатком данного материала является то, что для его производства необходимо применять дорогостоящее оборудование, а именно индукционную печь с глубоким вакуумом 5×10-3 Па.

В патентах US 6682611 (опубл. 27.01.2004) и US 20030079813 А1 (опубл. 27.01.2004) говорится об изготовлении аморфного сплава на основе циркония низкой чистоты и невысокого вакуума при добавлении иттрия. Сплав имеет формулу ZraMbNcYd, М представляет собой по меньшей мере один переходный металл, N-Al или Be. Содержание иттрия варьируется от 2 до 4%. Недостатком данных изобретений является присутствие в их составе токсичного бериллия.

Прототипами заявляемого способа является патент US 668261, в котором указывается возможность повышения стеклообразующей способности сплавов на основе циркония при помощи небольшой добавки иттрия, а также возможность использования шихтовых материалов низкой чистоты. Основным отличием данного изобретения является повышенное содержание циркония, пониженное содержание меди, возможность использования низкого вакуума и неинертных тиглей при приготовлении сплавов.

Техническим результатом данного изобретения является получение ОМС на основе циркония размером до 5 мм в условиях низкого вакуума с применением неинертных тиглей из диоксида циркония. Техническим эффектом указанного изобретения является сохранение высокой прочности и удовлетворительной пластичности, характерных для объемных металлических стекол, полученных в условиях высокого вакуума, при значительно меньших затратах на их изготовление. Патент защищает сплав на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм, содержащий медь, железо, алюминий, отличающийся тем, что он дополнительно легирован самарием, при следующем соотношении компонентов, ат. %: Cu 20-25; Fe 5; Al 10; Sm 0,5-1; Zr -остальное (такое содержание Cu, Fe, Al и Zr в сплаве делает его состав близким к эвтектическому, что позволяет проводить аморфизацию объемных образцов, а такое содержание Sm устраняет негативное влияние кислорода, поступаемого из атмосферы и тигля), и способ в условиях низкого вакуума сплава на основе циркония для изготовления объемных металлических стекол диаметром до 5 мм, заключающийся в сплавлении чистых (99,9% чистоты) металлов в тигле из диоксида циркония в индукционной печи при остаточном давлении 10-2-10-3 торр (такое давление обеспечивает минимальное окисление расплава при незначительных затратах на оборудование) и разливке расплава при температуре 1100-1200°C (интервал обеспечивает оптимальное сочетание жидкотекучести и скорости охлаждения при разливке) в медную изложницу под давлением аргона.

Описание чертежей

Фиг. 1 - Рентгенограмма образца диаметром 5 мм из сплава Zr62Cu22..5Fe5Al10Sm0.5

Фиг. 2 - ДСК-кривая образца диаметром 5 мм из сплава Zr62Cu22..5Fe5Al10Sm0.5

Фиг. 3 - Микроструктура образца диаметром 5 мм из сплава Zr62Cu22.5Fe5Al10Sm0.5

Фиг. 4 - Кривая сжатия образца диаметром 5 мм и высотой 5 мм из сплава Zr62Cu22.5Fe5Al10Sm0.5

Фиг. 5 - Рентгенограмма образца диаметром 5 мм из сплава Zr64Cu20Fe5Al10Sm1

Фиг. 6 - Микроструктура образца диаметром 5 мм из сплава Zr64Cu20Fe5Al10Sm1

Фиг. 7 - ДСК-кривая образца диаметром 5 мм из сплава Zr62Cu22Fe5Al10Sm1

Фиг. 8 - Кривая сжатия образца диаметром 5 мм и высотой 5 мм из сплава Zr64Cu20Fe5Al10Sm1

Фиг. 9 - Рентгенограмма образца диаметром 5 мм из сплава Zr61.5Cu22Fe5Al10Sm1.5

Фиг. 10 - Микроструктура образца диаметром 5 мм из сплава Zr61.5Cu22Fe5Al10Sm1.5

Фиг. 11 - ДСК-кривая образца диаметром 5 мм из сплава Zr61.5Cu22Fe5Al10Sm1.5

Фиг. 12 - Кривая сжатия образца диаметром 5 мм и высотой 5 мм из сплава Zr61.5Cu22Fe5Al10Sm1.5

Осуществление изобретения

Для решения поставленной задачи предлагается следующая технология: чистые (99,9% чистоты) металлы для сплава состава (в ат.%) Zr60+a-bCu25-aFe5Al10Smb, где а=0-5, b=0.5-1, в количестве 20-50 грамм (масса шихтовых материалов обеспечивает минимальное количество для получения образца диаметром 3-5 мм), загружаются в тигель из диоксида циркония, который помещают в индукционную печь. Плавку проводят в индукционной печи при остаточном давлении 10-2-10-3 торр. Величина давления выбрана исходя из минимизации затрат на производство и рафинирующей возможности Sm. Разливку расплава осуществляют при температуре 1100-1200°C в медную изложницу под давлением аргона. Нижний предел температурного диапазона разливки был выбран для обеспечения хорошей жидкотекучести для заполнения изложницы. Верхний предел выбран для обеспечения высокой скорости охлаждения при разливке. Исследование структуры сплавов проводят с использованием рентгеноструктурного анализа на образцах толщиной 1 мм, вырезанных из поперечного сечения отливок, а также методом сканирующей электронной микроскопии. Исследование тепловых свойств ОМС проводят с использованием метода дифференциальной сканирующей калориметрии при скорости нагрева 40 K/мин на образцах массой 10-20 мг. Оценку механических свойств на сжатие проводят на цилиндрических образцах с соотношением высоты к диаметру 1:1.

Пример 1.

Сплав состава Zr62Cu22.5Fe5Al10Sm0.5 был получен следующим образом.

Для приготовления сплава использовались чистые металлы: цирконий, медь, железо, алюминий и самарий чистотой 99,9%. Плавку вели в тиглях из диоксида циркония в индукционной литьевой минимашине Indutherm МС-20. Остаточное давление в процессе плавки составляло 10-2-3·10-3 торр. Разливку осуществляли при температуре 1100°C в медную изложницу с диаметром 5 мм под давлением аргона 3 атм.

После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 1 представлена рентгенограмма образца из поперечного сечения отливки. Как видно, структура полностью аморфная. Исследование тепловых свойств сплава также показало наличие пика кристаллизации при нагреве (фиг. 2). Основные характеристические температуры полученного сплава следующие: tg=400°C, tx=493°C.

В микроструктуре сплава присутствует аморфная матрица (с расслоением по химическому составу на две фазы) и незначительное количество оксидов самария (Sm2O3) (фиг. 3).

Механические испытания сплава показали, что прочность и пластичность сплава находится на уровне ОМС, полученного обычным способом в условиях высокого вакуума (фиг. 4).

Пример 2.

Сплав состава Zr64Cu20Fe5Al10Sm1 был получен следующим образом.

Для приготовления сплава использовались чистые металлы: цирконий, медь, железо, алюминий и самарий чистотой 99,9%. Плавку вели в тиглях из диоксида циркония в индукционной литьевой минимашине Indutherm МС-20.

Остаточное давление в процессе плавки составляло 10-2-3·10-3 торр. Разливку осуществляли при температуре 1200°C в массивную медную изложницу с диаметром 5 мм под давлением аргона 3 атм. После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 5 представлена рентгенограмма образца из поперечного сечения отливки. Как видно из фиг. 6, структура аморфная (с незначительным количеством кристаллических фаз). Исследование тепловых свойств сплава также показало наличие пика кристаллизации при нагреве (фиг. 7). Основные характеристические температуры полученного сплава следующие: tg=396°C, tx=470°C. В микроструктуре сплава присутствует аморфная матрица (с расслоением по химическому составу на две фазы) и незначительное количество оксидов самария (Sm2O3) (фиг. 6).

Механические испытания сплава показали, что прочность и пластичность сплава находится на уровне ОМС, полученного обычным способом в условиях высокого вакуума (фиг. 8).

Пример 3.

Сплав состава Zr61.5Cu22Fe5Al10Sm1.5 (с большим содержанием самария, чем указано в формуле изобретения) был получен следующим образом.

Для приготовления сплава использовались чистые металлы: цирконий, медь, железо, алюминий и самарий чистотой 99,9%. Плавку вели в тиглях из диоксида циркония в индукционной литьевой минимашине Indutherm МС-20. Остаточное давление в процессе плавки составляло 10-2-3·10-3 торр. Разливку осуществляли при температуре 1150°C в массивную медную изложницу с диаметром 5 мм под давлением аргона 3 атм. После получения отливки образец исследовали методом рентгеноструктурного анализа. На фиг. 9 представлена рентгенограмма образца из поперечного сечения отливки. Как видно, в структуре присутствуют кристаллические фазы. Исследование тепловых свойств сплава также показало, что величина пика кристаллизации значительно ниже, чем в примерах 1 и 2 (фиг. 10). Это свидетельствует о меньшей доле аморфной фазы.

В микроструктуре сплава присутствует аморфная матрица, оксиды самария (Sm2O3), а также кристаллические включения неправильной формы (фиг. 11). Механические испытания сплава показали, что прочность существенно снижается, а пластичность равна нулю (фиг. 12). Изменение структуры и свойств явилось результатом образования кристаллических соединений самария при его количестве, большем чем 1 ат.%.


МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
МАТЕРИАЛ НА ОСНОВЕ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ НА ОСНОВЕ ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В УСЛОВИЯХ НИЗКОГО ВАКУУМА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 323.
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74b

Способ контроля напряженного состояния массива горных пород в окрестности выработки

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со...
Тип: Изобретение
Номер охранного документа: 0002618778
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c85e

Способ приготовления катализатора для получения синтез газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез газа из метана с его использованием

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Способ приготовления катализатора для получения синтез-газа из метана включает носитель и нанесенные на его...
Тип: Изобретение
Номер охранного документа: 0002619104
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d045

Рабочее тело на основе магнитоактивных и пьезоактивных материалов для магнитных твердотельных тепловых насосов

Изобретение относится к области холодильной и криогенной техники. Рабочее тело с применением магнитокалорического эффекта в твердотельных тепловых насосах содержит хладагент, выполненный из материала с гигантским магнитокалорическим эффектом, и, по меньшей мере, один пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002621192
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d081

Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками для повышения электропроводности полимерматричных композитов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны...
Тип: Изобретение
Номер охранного документа: 0002621335
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d1ef

Способ получения отливок из высокопрочного сплава на основе алюминия

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и...
Тип: Изобретение
Номер охранного документа: 0002621499
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d22c

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3,...
Тип: Изобретение
Номер охранного документа: 0002621500
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d492

Способ получения прутков из высокопрочного алюминиевого сплава

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002622199
Дата охранного документа: 13.06.2017
Показаны записи 91-100 из 183.
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74b

Способ контроля напряженного состояния массива горных пород в окрестности выработки

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со...
Тип: Изобретение
Номер охранного документа: 0002618778
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c85e

Способ приготовления катализатора для получения синтез газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез газа из метана с его использованием

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Способ приготовления катализатора для получения синтез-газа из метана включает носитель и нанесенные на его...
Тип: Изобретение
Номер охранного документа: 0002619104
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d045

Рабочее тело на основе магнитоактивных и пьезоактивных материалов для магнитных твердотельных тепловых насосов

Изобретение относится к области холодильной и криогенной техники. Рабочее тело с применением магнитокалорического эффекта в твердотельных тепловых насосах содержит хладагент, выполненный из материала с гигантским магнитокалорическим эффектом, и, по меньшей мере, один пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002621192
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d081

Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками для повышения электропроводности полимерматричных композитов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны...
Тип: Изобретение
Номер охранного документа: 0002621335
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d1ef

Способ получения отливок из высокопрочного сплава на основе алюминия

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и...
Тип: Изобретение
Номер охранного документа: 0002621499
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d22c

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3,...
Тип: Изобретение
Номер охранного документа: 0002621500
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d492

Способ получения прутков из высокопрочного алюминиевого сплава

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002622199
Дата охранного документа: 13.06.2017
+ добавить свой РИД