×
13.01.2017
217.015.6d89

Результат интеллектуальной деятельности: НАНОКОМПОЗИЦИОННЫЙ ЭЛЕКТРОКОНТАКТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения. Нанокомпозиционный электроконтактный материал на основе меди состоит из частично разупорядоченной матрицы на основе меди, в которой распределены кластеры тугоплавких частиц размером менее 5 нм, при этом содержание тугоплавких частиц составляет от 20 до 80 мас.%. В качестве тугоплавких частиц могут быть использованы частицы хрома или вольфрама или молибдена. Способ получения нанокомпозиционного электроконтактного материала включает механическую обработку смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси. Высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут. Спекание полученных нанокомпозионных частиц с размером тугоплавкого металла менее 5 нм осуществляют методом искрового плазменного спекания, при этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 A под нагрузкой до 50 МПа. Температура спекания образцов не превышает 1000°C при продолжительности процесса не более 15 минут. Повышение твердости, снижение пористости и удельного электросопротивления образцов является техническим результатом изобретения. 2 н. и 1 з.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к области электротехники и нанотехнологии, в частности к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Cu), которые могут быть использованы в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и вакуумных дугогасительных камерах.

При изготовлении указанных материалов необходимо получить сочетание высокой электропроводности, для чего в качестве основы используют Cu, и высокой износостойкости при воздействии электрической дуги, для чего необходимо вводить в состав композиционного материала тугоплавкие металлы с высокой температурой плавления и испарения, таких как вольфрам (W), хром (Cr) и молибден (Мо). Медь не смешивается и не взаимодействует с вольфрамом, хромом и молибденом, образуя при спекании псевдосплавы различного состава: Cu-Cr, Cu-W, Cu-Mo.

Известен материал и способ изготовления электрических контактов на основе Cr и Cu, включающий приготовление шихты механическим смешиванием порошков Cr и Cu, прессование и предварительное восстановление в атмосфере остроосушенного водорода с выдержкой при температуре 250-700°C, жидкофазное спекание при температуре 1100-1250°C в атмосфере остроосушенного водорода или твердофазное спекание при температуре не выше 1050°C в атмосфере водорода или в вакууме, дополнительный нагрев изделий до температуры 300-950°C в атмосфере водорода и осадку в закрытом штампе, при этом перед смешиванием порошков Cr и Cu проводят обкатку шарами частиц порошка хрома выполняют в течение 25-27 часов в медном барабане валковой мельницы в режиме «перекатывания» при соотношении массы шаров или обкатывающих тел и порошка 1:2 (RU 2369935, H01H 1/02, 10.10.2009).

Недостатком известного материала и способа его получения является длительность процесса измельчения порошка хрома (не менее 25 часов), крупный размер частиц хрома, средний диаметр которых после механической обработки составляет 53,2-57,9 мкм, высокая пористость материала для контактов (до 2%).

Известен способ получения псевдосплава Cu-Cr с дисперсной структурой, включающий активацию путем смешивания исходных порошков Cu и Cr в качестве тугоплавкого металла в смесителе со смещенной осью вращения, прессование активированных порошков и их спекание в вакууме при температуре 1000-1100°C в течение 2 часов, при этом активацию исходных порошков шихты в смесителе осуществляют мелющими телами в виде металлических шариков диаметром 8-10 мм, при соотношении массы мелющих тел и исходных порошков 15:1, продолжительности смешивания шихты 3-3,5 часа и скорости вращения смесителя 60 об/мин (RU 2344189, C22C 1/04, B22F 3/12, C22C 9/00, 10.02.2008).

Изобретение позволяет получать компактный псевдосплав Cu-Cr с дисперсной структурой, с размерами частиц 40 мкм, твердостью по Бринеллю до 85 НВ, пределом прочности при растяжении до 290 МПа, с объемной усадкой при спекании при 1100°C, равной 8-10%.

Недостатком способа является продолжительность процесса (общее время не менее 6 часов), низкие механические свойства конечного материала, крупный размер частиц.

Наиболее близким аналогом к заявляемому способу является способ получения Cu-Mo композиционного материала (20-30 мас.% Cu), который включает приготовление смеси из промышленных порошков молибдена в качестве тугоплавкого металла и меди, путем размола и перемешивания в высокоэнергетической шаровой планетарной мельнице, обеспечивающей центростремительное ускорение мелющих тел не менее 40 g, в течение не менее 10 минут, прессование активированной смеси при усилии не более 150 МПа, поэтапное спекание в среде водорода, при этом первоначальный нагрев осуществляют до температуры восстановительной выдержки не менее 800°C, выдержке при этой температуре не менее одного часа и последующий нагрев до окончательной температуры спекания со скоростью не более 10°C в минуту, выдержку при этой температуре в течение не менее 30 минут (RU 2292988, B22F 3/12, C22C 1/04, 10.02.2007).

Недостатком известного способа является продолжительность процесса (не менее 2 часов), получение материала с пористостью до 2% и размером частиц более 30 нм.

Недостаточно высокие свойства описанных материалов ограничивают их использование в производстве силовых разрывных и дугогасительных контактов в переключателях мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.

В первом и втором объектах изобретения достигается технический результат, заключающийся в упрощении способа, повышении твердости, снижении пористости и удельного электросопротивления материалов при размере частиц не более 10 нм.

Технический результат в первом объекте достигается следующим образом.

Нанокомпозиционный электроконтактный материал на основе меди состоит из частично разупорядоченной матрицы на основе меди, в которой распределены кластеры тугоплавких частиц размером менее 5 нм. При этом содержание тугоплавких частиц от 20 до 80 мас.%.

В качестве тугоплавких частиц используют хром или вольфрам или молибден.

Технический результат во втором объекте достигается следующим образом.

Способ получения нанокомпозиционного электроконтактного материала включает высокоэнергетическую механическую обработку (ВЭМО) смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси. Высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут.

Затем проводят спекание полученных нанокомпозионных частиц с размером тугоплавкого металла менее 5 нм, которое осуществляют методом искрового плазменного спекания. При этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000A под нагрузкой до 50 МПа. При этом температура спекания не превышает 1000°C при продолжительности процесса не более 15 минут.

Изобретение поясняется чертежом, где на фиг. 1 изображена микроструктура псевдосплавов после искрового плазменного спекания (ИПС), где

а - псевдосплав Cu-Cr, без ВЭМО, спеченный методом ИПС (900°C, 100°C/мин, 10 мин, 50 МПа);

б - псевдосплав Cu-Cr, с ВЭМО (694 об/мин, K=1.0, 60 мин, 1:20) +ИПС (700°C, 100°C/мин, 10 мин, 50 МПа);

в - псевдосплав Cu-Cr, с ВЭМО (900 об/мин, K=1.0, 60 мин, 1:20) +ИПС (700°C, 100°C/мин, 5 мин, 50 МПа);

г - псевдосплав Cu-Cr, с ВЭМО (900 об/мин, K=1.0, 60 мин, 1:40) +ИПС (700°C, 100°C/мин, 5 мин, 50 МПа);

д - псевдосплав Cu-Cr, с ВЭМО (900 об/мин, K=1.0, 90 мин, 1:20) +ИПС (700°C, 100°C/мин, 5 мин, 50 МПа).

Нанокомпозиционный электроконтактный материала, полученный согласно способу, представляет собой нанокомпозит, состоящий из кластеров на основе тугоплавких частиц размером менее 5 нм, распределенных в частично разупорядочной матрице, характеризующийся тем, что имеет плотность до 99%, твердость по Виккерсу 2,5-11 ГПа, электросопротивление 7-10 мкОм·см.

В качестве основных исходных компонентов для получения экспериментальных образцов нанокомпозитных материалов на основе псевдосплавов Cu-Cr, Cu-W, Cu-Mo для электрических контактов используются порошки металлов: Cu (порошок медный электролитический) марки ПМС-В (ГОСТ 4960-75); Cr (порошок хрома восстановленный) марки ПХ1М; Мо (молибденовый порошок) марки ПМ99,95 (ТУ 48-19-316-80); W (вольфрамовый порошок) марки ПВ2 (ТУ 14-22-143-2000).

Размол и перемешивание смеси исходных порошков меди и тугоплавкого металла проводят в высокоэнергетической планетарной шаровой мельнице «Активатор-28» мелющими стальными шарами в течение не более 1 часа. За счет интенсивной механической обработки порошков в мельнице происходит их активация и измельчение до наноразмеров не более 10 нм. Этот первый этап способа принято обозначать как ВЭМО.

После ВЭМО исходных порошков в мельнице «Активатор-28», полученные активированные нанокомпозитные смеси порошков Cu-Cr, Cu-W, Cu-Mo спекают на установке ИПС (Spark Plasma Sintering - Labox 650, SinterLand, Япония), второй этап способа.

ИПС - это один из способов спекания (консолидации) порошка в присутствии электрического поля, в котором применяются низковольтные источники импульсов тока.

Сущность способа заключается в следующем.

Смесь исходных порошков меди и тугоплавкого металла загружают в барабан мельницы «Активатора 2S», затем крышка барабана плотно закручивается. Клапан на крышке подсоединяется к вакуумному шлангу и производится вакуумирование барабана с помощью форвакуумного насоса до остаточного давления 0,01 Па. Через этот же клапан барабан заполняется инертным газом (аргоном) до атмосферного давления. После этого барабан отсоединяется от вакуумного шланга и устанавливается в полость на корпусе редуктора установки «Активатор 2S».

ВЭМО порошковых смесей Cu-Cr, Cu-Mo и Cu-W проводят при скорости вращения барабанов 694-900 об/мин и продолжительности активации не более 60 минут.

Затем полученные активированные нанокомпозитные смеси порошков Cu-Cr, Cu-W, Cu-Mo спекают на установке ИПС (Spark Plasma Sintering - Labox 650, SinterLand, Япония). Это второй этап способа.

Для проведения ИПС готовят навески активированных порошковых смесей Cu-Cr, Cu-Mo или Cu-W, одну из смесей помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 A под нагрузкой 20-50 МПа, при этом спекание осуществляют при температуре не выше 1000°C в течение не более 15 минут. Скорость нагрева до температуры спекания 700-1000°C составляет 100-500°C/мин. Образец выдерживают при заданной температуре в течение 5-15 минут. Короткие импульсы тока высокой энергии порождают искры на поверхности спекаемого образца зерен Cu и тугоплавкого металла, благодаря этому нагрев образца производится равномерно, при минимальном воздействии на микроструктуру.

После чего образец охлаждают до комнатной температуры и отделяют от пуансонов механическим способом.

Контроль качества образцов проводится на каждой технологическом этапе и осуществляется как визуальным осмотром, так и с использованием аппаратурных методик.

В комплексном исследовании микроструктуры и фазового состава были использованы методы порошковой рентгеновской дифракции (рентгеноструктурный анализ), растровой (сканирующей) электронной микроскопии, просвечивающей электронной микроскопии, дифракции электронов и другие. Исследованию подвергались не только образцы псевдосплавов, полученные согласно предлагаемому способу, но и коммерческие образцы аналогичных материалов, представленные Индустриальным партнером. Это необходимо для проведения сравнительного анализа структуры, химического и фазового составов и определения «точки отсчета» в создании новых материалов. Для спеченных образцов Cu-Cr, Cu-W, Cu-Mo осуществляется также контроль прочностных характеристик, пористости, электросопротивления и микроструктуры.

Сущность изобретения подтверждается примерами

Пример 1.

Получение нанокомпозиционного электроконтактного материала Cu-Cr (Фиг. 1 б-г).

Порошки Cu и Cr смешивают при соотношении 55 мас.% Cu и 45 мас.% Cr. Приготовленную смесь подвергают ВЭМО (измельчению и перемешиванию) в планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 694 об/мин. Соотношение шаров к смеси порошка составляет 20:1. Использовались стальные шары 7 мм в диаметре. Время обработки 60 минут.

Полученный активированный композитный порошок подвергают ИПС, для этого порошок помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум, через спекаемый образец пропускают импульсный электрический ток 1000 A под нагрузкой 50 МПа и спекают образец при температуре 700°C в течение 10 мин со скоростью подъема температуры 100°C/мин. В результате получают образцы в форме дисков диаметром 15-50 мм и толщиной 2-6 мм.

Нанокомпозиционный электроконтактный материал имеет следующие характеристики: гомогенную практически беспористую наноструктуру, Пористость 1%, твердость по Виккерсу - 3,8 ГПа, удельное электросопротивление - 7 мкОм·м (24% ICAS).

Твердость данного материала в 3 раза выше твердости всех исследуемых промышленных образцов. Значение удельного сопротивления возрастает примерно на 25-50% по сравнению со значением промышленных образцов, что позволяет использовать его для электроконтактных материалов.

При повышении скорости оборотов до значения 900 на первом этапе и повышении скорости нагрева до 500°C/мин на втором этапе удается повысить твердость до 5 ГПа (Фиг. 1в). Увеличение продолжительности ВЭМО до 90 минут на первой стадии процесса позволяет повысить твердость конечного материала до 5,2 ГПа (Фиг. 1д). Снижение соотношения количества смеси к количеству шаров 1:20 или 1:40 не влияет на твердость (Фиг. 1в и Фиг. 1г).

Исследования на просвечивающем электронном микроскопе со сверхвысоким разрешением (увеличение до 2000000 раз) показали, что материал представляет собой нанокомпозит, состоящий из кластеров на основе хрома размером 4-5 нм, распределенных в частично разупорядоченной матрице на основе Cu.

Микроструктура псевдосплавов после ИПС показана на фиг. 1 а-д, где светлые частицы - Cu, темные - Cr.

Пример 2.

Получение нанокомпозиционного электроконтактного материала Cu-W

Порошки Cu и W смешивают с соотношением 20 мас.% Cu и 80 мас.% W. Приготовленную смесь подвергают ВЭМО измельчению и перемешиванию в высокоэнергетической планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 900 об/мин. Соотношение шаров к смеси порошка составляет 40:1. Использовались стальные шары 7 мм в диаметре. Время обработки 60 минут.

Полученный активированный композиционный порошок подвергают спеканию методом ИПС при 900°C, 950°C и 1000°C со скоростью 100°C/мин в атмосфере аргона, через спекаемый образец пропускают импульсный электрический ток 5000A под нагрузкой 50 МПа и проводят спекание при указанных температурах в течение 10 мин.

Микроструктура образцов для Cu-W схожа с микроструктурой материала по примеру 1.

Нанокомпозиционный электроконтактный материал имеет следующие характеристики: пористость 1%, твердость по Виккерсу от 2,5 до 11 ГПа, удельное электросопротивление - 8 мкОм·см (19% ICAS).

Пример 3.

Получение нанокомпозиционного электроконтактного материала Cu-Mo

Порошки Cu и Mo смешивают с соотношением 50 мас.% Cu и 50 мас.% Mo. Приготовленную смесь подвергают измельчению и перемешиванию в высокоэнергетической планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 900 об/мин. Соотношение шаров к смеси порошка составляет 20:1. Использовались стальные шары диаметром 7 мм. Продолжительность обработки 60 минут.

Полученный активированный композиционный порошок подвергают ИПС в атмосфере аргона, через спекаемый образец пропускают импульсный электрический ток 1000 A под нагрузкой 50 МПа и проводят спекание при температуре 900°C в течение 10 мин. В результате получают образцы в форме дисков диаметром 15-50 мм и толщиной 2-6 мм.

Микроструктура образца схожа с микроструктурой материала по примеру 1.

Нанокомпозиционный электроконтактный материал Cu-Mo имеет следующие характеристики: пористость 1%; твердость по Виккерсу - 3,4-3,9 ГПа, удельное электросопротивление - 9,3 мкОм·см (18,5% ICAS).

Как следует из примеров описания, предлагаемый инновационный способ отличается простотой выполнения, так как позволяет проводить компактирование порошковых материалов при относительно низких температурах 700-1000°C, сохраняя тем самым наноструктуру активированных порошков. Кроме того, общая продолжительность получения целевого материала не превышает 2 часа (для известных способов продолжительность составляет более 10 часов), что в значительной мере снижает расход электроэнергии.

Нанокомпозиционный электроконтактный материал, полученный предлагаемым способом состоит из кластеров металла с размерами от нескольких нанометров до нескольких десятков нанометров, разделенных между собой каркасом Cu фазы, которые в свою очередь, состоят из округлых нанометровых зерен тугоплавкого металла (меньше 100 нм), окруженных матрицей Cu. Такая структура предлагаемого материала обладает повышенными эксплуатационными свойствами по сравнению с материалами аналогов и промышленными материалами для контактов, например, ОАО "ПОЛЕМА" и компаний Китая и Германии.

Потенциальными потребителями материала, полученного по предлагаемому способу являются: электротехническая промышленность, где необходимы высокая электрическая проводимость, высокие механические, физические и эксплуатационные свойства, такие как прочность, твердость при комнатной и повышенной температурах, термическая стабильность, дугостойкость, для применения в производстве силовых разрывных и вакуумных дугогасительных контактов в переключателях (размыкателях) мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.


НАНОКОМПОЗИЦИОННЫЙ ЭЛЕКТРОКОНТАКТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
НАНОКОМПОЗИЦИОННЫЙ ЭЛЕКТРОКОНТАКТНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 328.
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
Показаны записи 11-20 из 187.
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
+ добавить свой РИД