×
13.01.2017
217.015.6cd7

Результат интеллектуальной деятельности: МЕТАЛЛИЧЕСКИЙ НАПОЛНИТЕЛЬ, РАЗДЕЛЯЮЩИЙ СЛОИ р- И n-ТИПА, ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ, МОНТИРУЕМЫХ МЕТОДОМ ПЕРЕВЕРНУТОГО КРИСТАЛЛА

Вид РИД

Изобретение

№ охранного документа
0002597071
Дата охранного документа
10.09.2016
Аннотация: Структура (10) светоизлучающих диодов (СИДов) имеет полупроводниковые слои, включающие в себя слой p-типа, активный слой и слой n-типа. Слой p-типа имеет нижнюю поверхность, а слой n-типа имеет верхнюю поверхность, через которую излучается свет. Участки слоя p-типа и активного слоя стравливают, открывая слой n-типа. На поверхности СИДа формируют рисунок с помощью фоторезиста и на открытых поверхностях осаждают медь, формируя p- и n-электроды, находящиеся в электрическом контакте с соответствующими им полупроводниковыми слоями. Между p- и n-электродами имеется зазор. Для обеспечения механической поддержки полупроводниковых слоев в пределах зазора в зазоре формируют диэлектрический слой (34) с последующим заполнением зазора металлом (42). В металле формируют рисунок, чтобы сформировать столбиковые выводы (40, 42, 44), которые, по существу, покрывают нижнюю поверхность кристалла СИДа, но не замыкают электроды накоротко. По существу, равномерное покрытие поддерживает полупроводниковый слой во время последующих этапов обработки. Изобретение обеспечивает стойкую к механическим воздействиям опорную структуру и повышенное термическое сопротивление. 2 н. и 13 з.п. ф-лы, 9 ил.

Область техники, к которой относится изобретение

Изобретение относится к светоизлучающим диодам (СИДам), в частности к СИДу, монтируемому методом перевернутого кристалла и имеющему стойкую к механическим воздействиям опорную структуру и повышенное термическое сопротивление.

Характеристика предшествующего уровня техники

СИДы, монтируемые методом перевернутого кристалла, желательны во многих применениях, поскольку в них не используется соединение проводами. Оба электрода находятся на нижней поверхности СИДа для непосредственного соединения с металлическими контактными площадками на кристаллодержателе. Соединение можно осуществлять с помощью ультразвуковой сварки, припоя, электропроводного клея или других средств. Свет выходит из поверхности СИДа, противоположной электродам.

В типичном перевернутом кристалле СИДа, эпитаксиальный слой p-типа является нижним слоем и вводится в контакт с нижним анодным электродом. Участок слоя p-типа и активный слой надо стравить, чтобы открыть нижнюю сторону эпитаксиального слоя n-типа, что позволяет соединение с нижним катодным электродом. Это травление создает распределенные сквозные отверстия сквозь слой p-типа, которые открывают нижнюю поверхность слоя n-типа. Затем сквозные отверстия изолируют, а в этих отверстиях осаждают металл для контакта со слоем n-типа.

Такая топография, как правило, достигается посредством сухого травления полупроводникового материала (например, GaN) в среде плазмы.

Металл, контактирующий со слоем n-типа, и металл, контактирующий со слоем p-типа, разделены зазорами. Поэтому механической опоры хрупких полупроводниковых слоев между металлическими электродами нет.

В конце обработки на уровне пластины, подложки для выращивания пластин СИДов утоняют и формируют индивидуальные кристаллы путем разделения. Затем электроды СИДа соединяют с металлическими контактными площадками на сегменте кристаллодержателя, на котором установлены многие другие СИДы. В качестве меры предотвращения утечки из полупроводниковых слоев известно введение диэлектрического материала-наполнителя на органической основе между полупроводниковыми слоями и кристаллодержателем. Такой процесс введения отнимает время, поскольку сегмент кристаллодержателя может служить опорой сотням СИДов.

Чтобы увеличить светоотдачу после соединения электродов СИДа с сегментом кристаллодержателя и введения наполнителя, подложку для выращивания удаляют и открывают тонкие полупроводниковые слои с типичной толщиной примерно 5 микрон. Такие структуры СИДов называют тонкопленочными СИДами, монтируемыми методом перевернутого кристалла (TFFC). Полупроводниковые слои весьма чувствительны и подвержены повреждениям, а процесс утонения и удаления подложек создает механические напряжения в полупроводниковых слоях. Таким образом, наполнитель необходим. Затем сегмент кристаллодержателя разделяют, создавая смонтированные приборы, готовые к следующему уровню - уровню корпусирования.

Материал наполнителя, такой как композиционный материал на основе силикона или эпоксидной смолы (например, формовочной композиции), неизбежно имеет некоторое несоответствие материала полупроводниковым слоям, такое как несоответствие коэффициента температурного расширения (КТР) и несоответствие модуля Юнга. Это ведет к отслаиванию или проблемам надежности во время циклического изменения температуры или в других условиях механических напряжений.

Необходим способ формирования TFFC, стойкого к внешним воздействиям и не требующего наполнителя для механической опоры.

Сущность изобретения

В одном варианте осуществления изобретения СИД, монтируемый методом перевернутого кристалла, формируют путем выращивания слоев n-типа, активного слоя, и слоев p-типа поверх подложки для выращивания. Затем стравливают участки слоев p-типа и активного слоя, открывая слой n-типа для электрического контакта. Потом формируют металлические электроды для слоев n-типа и слоев p-типа, где n- и p-электроды разделены зазорами во избежание короткого замыкания.

Чтобы обеспечить механическую опору нижней поверхности СИДа между электродами, боковые стенки и нижнюю поверхность зазора изолируют диэлектрическим слоем, а зазор заполняют металлом посредством электролитического осаждения. Металл, заполняющий зазор, электрически изолируют, по меньшей мере, от одного из электродов, чтобы предотвратить короткое замыкание. Когда электроды СИДа соединяют с контактными площадками кристаллодержателя, металл, заполняющий зазор, упирается в одну из контактных площадок. Поэтому вся нижняя поверхность СИДа оказывается, по существу, поддерживаемой совокупностью электродов и металла, заполняющего зазор, после монтажа СИДа на сегменте кристаллодержателя, тем самым исключая необходимость наполнителя. КТР и модуль Юнга металла гораздо ближе к КТР и модулю Юнга полупроводниковых слоев, чем к КТР и модулю Юнга материалов-наполнителей на органической основе, что значительно увеличивает надежность СИДа во время действия тепловых напряжений при эксплуатации.

При исключении процесса заполнения на уровне сегмента, на уровне пластины можно отрабатывать больше этапов корпусирования СИДа, что приводит к лучшей наращиваемости производства и дополнительному снижению производственных затрат. Можно привести пример, в котором пластины СИДов соединяют с пластиной-носителем посредством соответствующих контактных площадок электродов, выровненных надлежащим образом, или осажденную структуру делают достаточно толстой и механически жесткой для формирования пластинодержателя. СИДы на пластине-носителе затем обрабатывают одновременно на уровне пластины, например, путем удаления подложки для выращивания, придания шероховатости верхнему полупроводниковому слою для повышенной светоотдачи, герметизации СИДов и разделения для корпусирования на следующем уровне. Металл, по существу, покрывающий нижнюю поверхность полупроводниковых слоев, обеспечивает приемлемую механическую опору для полупроводниковых слоев во время обработки на уровне пластины.

Также описаны другие варианты осуществления способов и структур.

Краткое описание чертежей

На фиг.1 представлен упрощенный вид а разрезе полупроводниковых слоев СИДа, выращенных на подложке для выращивания. Каждый из слоя p-типа, активного слоя и слоя n-типа может содержать несколько слоев.

На фиг.2 изображены участки слоя p-типа и активного слоя, стравленные для обеспечения омического контакта со слоем n-типа с целью формирования перевернутого кристалла, а также диэлектрический слой и затравочный слой меди, сформированные поверх структуры.

На фиг.3 изображена упрощенная версия (для простоты толщина слоя p-типа и активного слоя не учтена) полупроводниковых слоев СИДа, имеющих сформированные на поверхности участки фоторезиста, после чего следуют этапы осаждения для формирования, по меньшей мере, слоя меди, находящегося в электрическом контакте со слоем n-типа и слоем p-типа.

На фиг.4 изображена структура согласно фиг.3 после удаления участков фоторезиста и после стравливания открытого затравочного слоя.

На фиг.5 изображен диэлектрический слой, изолирующий боковые стенки и нижнюю поверхность зазора между металлическими электродами.

На фиг.6 изображен затравочный слой золота, распыленный на поверхности диэлектрического слоя. Затем сформированы участки фоторезиста (не показаны), чтобы открыть те области затравочного слоя золота, где должно быть осаждено золото.

На фиг.7 изображена структура после осаждения золота на открытый затравочный слой и после стравливания затравочного слоя снова. Золото заполняет зазоры между медными электродами и покрывает участок n- и p-электродов.

На фиг.8 изображен кристалл с СИДами, смонтированными на пластину-кристаллодержатель для дальнейшей обработки.

На фиг.9 изображен участок кристалла с СИДами, имеющий другую конфигурацию электродов, в которой металл, заполняющий зазор, осуществляет электрический контакт со слоями и n-, и p-типа.

Элементы, обозначенные одинаковыми позициями на различных чертежах, могут быть одинаковыми или эквивалентными.

Подробное описание

На фиг.1-7 изображены сечения малого участка пластины СИДов, имеющей лишь единственный СИД, причем центральный участок единственного СИДа значительно приуменьшен в поперечном направлении, чтобы показать подробности боковых краев. Чтобы упростить описание, показан контакт только периферии слоя n-типа для каждого СИДа посредством электрода. В реальном устройстве, слой n-типа может вступать в контакт посредством распределенных электродов для улучшенного растекания тока.

На фиг.1 изображены полупроводниковые слои 10 GaN обычного СИДа, эпитаксиально выращенные на сапфировой подложке 12 и представленные в порядке выращивания следующим образом: слой зародышеобразования, слои, уменьшающие механические напряжения, n-слои 14, активные (излучающие свет) слои 16, p-слои 18 и любые другие полупроводниковые слои, которые используются для формирования СИДов. СИДы, сформированные на пластине, могут быть СИДами из AlInGaN, в зависимости от желаемой длины волны на желаемом пике. В альтернативном варианте, СИДы не обязательно должны быть на основе GaN, и возможен СИД любого другого типа, предусматривающий использование любого типа подложки для выращивания. Изобретение применимо к формированию любого СИДа в качестве перевернутого кристалла.

На фиг.2 показано, что на пластину нанесена маска, и она подвергнута сухому травлению для удаления p-слоев 18 и активных слоев 16 с краев СИДа, чтобы открыть поверхность n-слоев 16 вокруг периферии СИДа. Это делают для всех СИДов на пластине. Такой процесс является обычным для формирования перевернутого кристалла.

На фиг.2 также показан диэлектрический слой 20, такой как SiNx, осажденный на поверхности пластины, а потом протравленный обычными методами в областях 21a, чтобы открыть участок поверхности p-слоев 18, и в областях 21b и 21c, чтобы открыть участки поверхности n-слоев 14. Осаждение можно проводить посредством напыления покрытия. Можно использовать любой подходящий диэлектрический материал. Диэлектрический слой 20 покрывает боковые стенки окна в p-слоях 18 и активных слоях 16 и покрывает участок поверхности p-слоев 18.

На поверхности пластины сформирован затравочный слой 22 меди, который создает омический контакт с n- и p-слоями посредством окон в диэлектрическом слое 20 в областях 21a-21c. Во избежание миграции атомов Cu, между затравочным слоем 22 меди и полупроводниковыми слоями можно сформировать барьерный слой, такой как содержащий никель, вольфрам, хром, ванадий и/или титан. Затравочный слой 22 меди и барьерный слой можно осаждать по всей пластине с помощью любого из ряда хорошо известных методов, таких как химическое осаждение из паровой фазы (CVD), распыление и т.д.

Показанные на фиг.3-8 слои 10 GaN будут в нижеследующем тексте называться одним полупроводниковым слоем 10 GaN, а подложка для выращивания не показана для простоты изображения. Толщина p-слоев 18 и активных слоев 16 составляет лишь несколько микронов, например порядка 5 микрон, которые, по существу, являются планарной структурой по сравнению с гораздо более толстыми электродами с нанесенным покрытием (толщина которых, например, на порядок больше, т.е. составляет 50-100 микрон), описываемыми ниже. Поэтому высота полупроводниковой мезаструктуры (слоев 16 и 18), показанной на фиг.2, не показана на рассматриваемых сейчас чертежах для простоты изображения. Толщины различных слоев на чертежах показаны не в масштабе.

На фиг.3 участки 26 фоторезиста нанесены, и в них сформирован рисунок посредством обычных методов литографии, чтобы открыть только те участки затравочного слоя 22, на которые следует осуществить осаждение меди. Эти открытые области включают в себя области, где затравочный слой 22 меди электрически контактирует с полупроводниковыми слоями в областях 21a-21c, показанных на фиг.2. Вместо фоторезиста, в качестве маски можно использовать другие материалы, такие как оксид или нитрид.

Открытые участки затравочного слоя 22 затем подвергают осаждению меди 28 до желаемой толщины. Можно использовать различные и хорошо известные методы электролитического осаждения, при осуществлении которых затравочный слой 22 подключают к некоторому потенциалу, а пластину погружают в электролит для переноса атомов меди с электрода. Можно также использовать осаждение методом химического восстановления. Медь 28 предпочтительна для растекания тепла и растекания тока по поверхности СИДа. Можно использовать другие металлы и методы осаждения.

Затем поверх меди 28 осаждают тонкий слой 30 никеля и слой 32 золота, чтобы обеспечить соединительную поверхность сопряжения золота с контактными площадками кристаллодержателя.

На фиг.4 показано, что участки 26 фоторезиста удалены в растворе, оставляя зазоры 29, а открытый затравочный слой 22 затем стравлен с использованием обычных методов. Затравочный слой под медью 28 больше не будет различим отдельно.

Электрод из меди 28, электрически контактирующий с p-слоями, изолирован от электрода из меди 28, электрически контактирующего с n-слоями, посредством зазоров 29.

На фиг.5 показано, что затем обычными методами поверх пластины осаждают диэлектрический слой 34, например, SiNx и в нем формируют рисунок. Осаждение можно осуществлять посредством нанесения покрытия распылением или другого подходящего способа. Можно использовать любой подходящий материал с низкой К (диэлектрической постоянной). В диэлектрическом слое 34 формируют рисунок для покрытия поверхности боковых стенок и нижней поверхности в зазоре 29 между соседними электродами из осажденной меди 28. Диэлектрический слой 34 со сформированным рисунком также покрывает малую площадь на верхней поверхности слоя 32 золота, чтобы гарантировать, что стороны электродов с нанесенным покрытием не будут открыты, и обеспечить диэлектрическую поверхность для поддержания металлического слоя, описываемую ниже.

На фиг.6 показано, что на поверхности пластины напылен тонкий золотой затравочный слой 36.

Затем поверх затравочного слоя 36 в фоторезисте (не показан) формируют рисунок, открывая только те области, на которые должно быть осаждено золото.

Как показано на фиг.7, на открытый затравочный слой 36 затем электролитически осаждают золото в едином этапе электролитического осаждения, чтобы заполнить зазоры 29 (фиг.6), с соответствующим одновременным выращиванием и формированием столбиковых выводов для последующего крепления кристаллов. После удаления фоторезиста, открытый затравочный слой 36 затем снова стравливают, формируя следующие группы столбиковых выводов: 1) столбиковые выводы 40 из золота, электрически контактирующие со слоями n-типа посредством слоя 32 золота; 2) столбиковые выводы 42 из золота, электрически контактирующие со слоями p-типа посредством слоя 32 золота; и 3) столбиковые выводы 44 из золота поверх диэлектрического слоя 34, которые электрически изолированы и от слоев n-типа, и от слоев p-типа. Отметим, что столбиковые выводы 44 из золота выполнены лежащими поверх диэлектрического слоя 34 на электроде из меди 28 для слоев n-типа. Столбиковые выводы 44 из золота действуют как изолирующие буферы между недалеко отстоящими n- и p-электродами и обеспечивают механическую опору поверхности, следующей за зазором.

Предусматривая столбиковые выводы из золота, а не больший слой золота, можно легче соединять золото в выполненных из золота контактных площадках кристаллодержателя, когда осуществляют ультразвуковую сварку электродов СИДов с контактными площадками кристаллодержателя.

Получаемую пластину СИДов можно затем разделять для крепления кристаллов, или можно соединять с пластиной-носителем для дальнейшей обработки на уровне пластины. В альтернативном варианте, структуру слоя меди 28 можно сделать достаточно толстой и механически жесткой, чтобы она действовала как пластина-носитель для продолжения обработки с целью корпусирования на уровне пластины.

В одном варианте осуществления, показанном на фиг.8, каждый индивидуальный кристалл СИДа затем монтируют на пластину-кристаллодержатель 50, имеющую для каждого кристалла СИДа центральную контактную площадку 52 из золота для p-контакта и периферийную контактную площадку 54 из золота для n-контакта. Конфигурация контактных площадок и электродов может быть гораздо более сложной, чем показанная на фиг.8. Например, n-электроды для кристалла СИДа могут быть распределены по поверхности кристалла СИДа с помощью межсоединений через p-слои и активные слои, а контактные площадки на пластине-кристаллодержателе должны соответствовать местам электродов на кристалле СИДа. Тело 56 пластины-кристаллодержателя 50 может быть керамическим или может состоять из другого материала, обладающего подходящей теплопроводностью.

Полярности столбиковых выводов из золота на кристалле СИДа обозначены как p, n и d (для отсутствия полярности). Промежуток между столбиковыми выводами 40, 42, 44 из золота может быть очень малым, поскольку этот промежуток определяется маскированием для осаждения, которое можно сделать очень точным. Хотя столбиковый вывод 42 из золота, по меньшей мере, частично заполняющий зазор, может не быть расположенным вровень с другими столбиковыми выводами 40 и 44 из золота, столбиковый вывод 42 из золота обеспечивает механическую опору области зазора. Кроме того, благодаря относительно легко изменяемым характеристикам золота, ультразвуковая сварка электродов СИДа с контактными площадками кристаллодержателя сделает несколько более пологими любые высокие точки, обеспечивая, по существу, равномерный контакт по всей нижней поверхности кристалла СИДа. Следовательно, по существу, вся нижняя поверхность кристалла СИДа, по существу, равномерно опирается на столбиковые выводы из золота, обеспечивая надлежащую механическую опору для полупроводниковых слоев во время последующей обработки.

Контактные площадки 52 и 54 на пластине-кристаллодержателе 50 можно сформировать близко расположенными, не предъявляя при этом особые требования к допускам на размещение кристалла СИДа, поскольку столбиковые выводы 44 из золота электрически изолированы и не будут замыкаться накоротко, если некоторые столбиковые выступы 44 контактируют с металлической p-контактной площадкой 52, а некоторые контактируют с соседней металлической n-контактной площадкой 54 благодаря рассогласованию.

Помимо того что столбиковые выводы 42 из золота обеспечивают механическую опору за счет заполнения зазора между участками из меди 28, они также увеличивают проводимость контактной площадки 52 кристаллодержателя к слоям p-типа благодаря дополнительной площади электродов.

В одном варианте осуществления, кристаллы СИДов на пластине-кристаллодержателе 50 затем подвергают воздействию процесса отслаивания подложки лазером, в ходе которого сапфировая подложка для выращивания отслаивается после того, как кристалл СИДа подвергся воздействию лазерного импульса. Это создает высокое направленное вниз давление 55 на полупроводниковых слоях. Разрыв полупроводниковых слоев предотвращается благодаря металлической опоре из столбиковых выводов из золота, по существу, на всей задней поверхности кристалла СИДа.

Кристаллы СИДов затем подвергают процессу утонения, для чего можно использовать химико-механическую полировку (ХМП) или другой метод, который способствует утонению полупроводниковых слоев до всего лишь нескольких микронов. Открытой верхней поверхности затем придают шероховатость с помощью процесса травления, чтобы увеличить светоотдачу.

Кристаллы СИДов можно затем герметизировать, например, путем формования линз поверх всех кристаллов.

Пластину-кристаллодержатель 50 затем разделяют (например, распиливают), формируя индивидуальные СИДы.

На фиг.9 изображен еще один вариант осуществления конфигурации электродов на кристалле СИДа. Формирование столбиковых выводов не проводится. После осаждения меди 28 поверх полупроводниковых слоев для электрического контакта с n- и p-слоями, осаждают диэлектрический слой 34 и формируют в нем рисунок, открывая участки n- и p-электродов из меди 28. Затем осаждают затравочный слой меди (не показан) на поверхности и маскируют его фоторезистом, открывая только те участки, которые подлежат осаждению. Затем электролитически осаждают слой меди 70 поверх открытого затравочного слоя, заполняя зазор между электродами из меди 28. Затем на медь 70 электролитически осаждают слой 72 никеля и слой 74 золота. Потом на поверхности формируют рисунок из стандартного материала 80 маски для нанесения припоя, а на открытый слой 74 золота наносят пасту 78 припоя для крепления кристалла к контактным площадкам кристаллодержателя. При нагревании паста 78 припоя соединяется с контактными площадками кристаллодержателя.

Можно также предусмотреть другие конфигурации электродов.

При подаче питания на СИДы, через слои n-типа, лежащие поверх p-слоев и активных слоев, излучается свет. Металл электродов (например, барьерный слой золота или никеля) отражает свет обратно через СИД.

Имея подробно описанное изобретение, специалисты в данной области техники поймут, что - с учетом данного описания - в рамках существа описанного здесь изобретательского замысла в изобретение можно внести модификации. Поэтому не следует считать, что объем притязаний изобретения ограничен проиллюстрированными и описанными конкретными вариантами осуществления.


МЕТАЛЛИЧЕСКИЙ НАПОЛНИТЕЛЬ, РАЗДЕЛЯЮЩИЙ СЛОИ р- И n-ТИПА, ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ, МОНТИРУЕМЫХ МЕТОДОМ ПЕРЕВЕРНУТОГО КРИСТАЛЛА
МЕТАЛЛИЧЕСКИЙ НАПОЛНИТЕЛЬ, РАЗДЕЛЯЮЩИЙ СЛОИ р- И n-ТИПА, ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ, МОНТИРУЕМЫХ МЕТОДОМ ПЕРЕВЕРНУТОГО КРИСТАЛЛА
МЕТАЛЛИЧЕСКИЙ НАПОЛНИТЕЛЬ, РАЗДЕЛЯЮЩИЙ СЛОИ р- И n-ТИПА, ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ, МОНТИРУЕМЫХ МЕТОДОМ ПЕРЕВЕРНУТОГО КРИСТАЛЛА
МЕТАЛЛИЧЕСКИЙ НАПОЛНИТЕЛЬ, РАЗДЕЛЯЮЩИЙ СЛОИ р- И n-ТИПА, ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ, МОНТИРУЕМЫХ МЕТОДОМ ПЕРЕВЕРНУТОГО КРИСТАЛЛА
МЕТАЛЛИЧЕСКИЙ НАПОЛНИТЕЛЬ, РАЗДЕЛЯЮЩИЙ СЛОИ р- И n-ТИПА, ДЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ, МОНТИРУЕМЫХ МЕТОДОМ ПЕРЕВЕРНУТОГО КРИСТАЛЛА
Источник поступления информации: Роспатент

Показаны записи 181-190 из 1 727.
13.01.2017
№217.015.8f0f

Система распознавания жестов

Изобретение относится к средству для обнаружения и распознавания жестов. Технический результат заключается в обеспечении возможности надежного обнаружения и распознавания жестов, не требующей от пользователя носить громоздкое оборудование. Устройство содержит, по меньшей мере, один электрод для...
Тип: Изобретение
Номер охранного документа: 0002605357
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f1b

Магниторезонансная (мр) визуализация, использующая контрастность арт и дискретизацию с множеством времен эха

Изобретение относится к области магниторезонансной (МР) визуализации. Способ MP визуализации по меньшей мере части тела, помещенного в основное магнитное поле В в пределах исследуемого объема устройства MP, содержит этапы, на которых подвергают часть тела радиочастотному импульсу насыщения при...
Тип: Изобретение
Номер охранного документа: 0002605516
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f31

Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок

Изобретение относится к сцинтилляторному блоку, который может быть использован в рентгеновской детекторной матрице для компьютерной томографии (СТ). Сцинтилляторный блок содержит матрицу пикселей сцинтиллятора, причем каждый из пикселей сцинтиллятора имеет верхнюю поверхность, нижнюю...
Тип: Изобретение
Номер охранного документа: 0002605520
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f5d

Управляемая жестами система, которая использует проприоцепцию, чтобы создавать абсолютную систему координат

Изобретение относится к пользовательским интерфейсам. Технический результат заключается в обеспечении системы координат, позволяющей пользователю задавать конкретное одно из множества состояний системы без необходимости учитывать обратную связь от системы во время управления. Система включает...
Тип: Изобретение
Номер охранного документа: 0002605349
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f69

Сцинтиллятор на основе тербия для детектора

Изобретение относится к области компьютерной томографии (КТ). Система визуализации содержит источник излучения и матрицу чувствительных к излучению детекторов, включающую в себя матрицу сцинтилляторов и матрицу фотодатчиков, оптически связанную с матрицей сцинтилляторов, причем матрица...
Тип: Изобретение
Номер охранного документа: 0002605518
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8fa7

Магнитно-резонансная визуализация с подавлением артефактов потока

Использование: для визуализации тела посредством магнитного резонанса (МР). Сущность изобретения заключается в том, что выполняют следующие этапы: a) генерирования, по меньшей мере, двух градиентных эхо-сигналов в два различных момента времени появления эха путем подвергания участка тела (10)...
Тип: Изобретение
Номер охранного документа: 0002605524
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8fd2

Чувствительное к излучению детекторное устройство с отклоняющими заряд зазорами между сегментами

Изобретение в целом относится к системам формирования изображения. Детекторное устройство для детектирования излучения содержит преобразующий слой, множество собирающих заряд электродов, множество внешних направляющих электродов, при этом детекторное устройство предназначено для приложения к...
Тип: Изобретение
Номер охранного документа: 0002605523
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8fe3

Устройство обнаружения данных для использования в комбинации с устройством mri

Использование: для обнаружения данных при использовании в комбинации с устройством магнитно-резонансной томографии (MRI). Сущность изобретения заключается в том, что блок обнаружения магнитного поля служит для обнаружения переменного во времени магнитного поля, сформированного устройством MRI,...
Тип: Изобретение
Номер охранного документа: 0002605525
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.901c

Устройство обработки воздуха

Изобретение относится к области обработки воздуха, в частности в автомобильной промышленности. Устройство обработки воздуха содержит: блок очистки воздуха, ароматический диспенсер; детектор воздуха, выполненный с возможностью обнаруживать очищенный воздух и создавать выходной сигнал;...
Тип: Изобретение
Номер охранного документа: 0002604013
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.90bf

Автостереоскопическое устройство отображения

Автостереоскопическое устройство отображения содержит устройство дисплея, содержащее массив разнесенных пикселей (50), световодное устройство, содержащее массив столбцов (51) световодов, и автостереоскопическое линзовое устройство (49), содержащее множество двояковыпуклых линз над световодным...
Тип: Изобретение
Номер охранного документа: 0002603947
Дата охранного документа: 10.12.2016
Показаны записи 181-190 из 629.
13.01.2017
№217.015.8f0f

Система распознавания жестов

Изобретение относится к средству для обнаружения и распознавания жестов. Технический результат заключается в обеспечении возможности надежного обнаружения и распознавания жестов, не требующей от пользователя носить громоздкое оборудование. Устройство содержит, по меньшей мере, один электрод для...
Тип: Изобретение
Номер охранного документа: 0002605357
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f1b

Магниторезонансная (мр) визуализация, использующая контрастность арт и дискретизацию с множеством времен эха

Изобретение относится к области магниторезонансной (МР) визуализации. Способ MP визуализации по меньшей мере части тела, помещенного в основное магнитное поле В в пределах исследуемого объема устройства MP, содержит этапы, на которых подвергают часть тела радиочастотному импульсу насыщения при...
Тип: Изобретение
Номер охранного документа: 0002605516
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f31

Сцинтилляторный блок, содержащий поглощающую рентгеновские лучи оболочку, и рентгеновская детекторная матрица, содержащая такой сцинтилляторный блок

Изобретение относится к сцинтилляторному блоку, который может быть использован в рентгеновской детекторной матрице для компьютерной томографии (СТ). Сцинтилляторный блок содержит матрицу пикселей сцинтиллятора, причем каждый из пикселей сцинтиллятора имеет верхнюю поверхность, нижнюю...
Тип: Изобретение
Номер охранного документа: 0002605520
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f5d

Управляемая жестами система, которая использует проприоцепцию, чтобы создавать абсолютную систему координат

Изобретение относится к пользовательским интерфейсам. Технический результат заключается в обеспечении системы координат, позволяющей пользователю задавать конкретное одно из множества состояний системы без необходимости учитывать обратную связь от системы во время управления. Система включает...
Тип: Изобретение
Номер охранного документа: 0002605349
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f69

Сцинтиллятор на основе тербия для детектора

Изобретение относится к области компьютерной томографии (КТ). Система визуализации содержит источник излучения и матрицу чувствительных к излучению детекторов, включающую в себя матрицу сцинтилляторов и матрицу фотодатчиков, оптически связанную с матрицей сцинтилляторов, причем матрица...
Тип: Изобретение
Номер охранного документа: 0002605518
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8fa7

Магнитно-резонансная визуализация с подавлением артефактов потока

Использование: для визуализации тела посредством магнитного резонанса (МР). Сущность изобретения заключается в том, что выполняют следующие этапы: a) генерирования, по меньшей мере, двух градиентных эхо-сигналов в два различных момента времени появления эха путем подвергания участка тела (10)...
Тип: Изобретение
Номер охранного документа: 0002605524
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8fd2

Чувствительное к излучению детекторное устройство с отклоняющими заряд зазорами между сегментами

Изобретение в целом относится к системам формирования изображения. Детекторное устройство для детектирования излучения содержит преобразующий слой, множество собирающих заряд электродов, множество внешних направляющих электродов, при этом детекторное устройство предназначено для приложения к...
Тип: Изобретение
Номер охранного документа: 0002605523
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8fe3

Устройство обнаружения данных для использования в комбинации с устройством mri

Использование: для обнаружения данных при использовании в комбинации с устройством магнитно-резонансной томографии (MRI). Сущность изобретения заключается в том, что блок обнаружения магнитного поля служит для обнаружения переменного во времени магнитного поля, сформированного устройством MRI,...
Тип: Изобретение
Номер охранного документа: 0002605525
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.901c

Устройство обработки воздуха

Изобретение относится к области обработки воздуха, в частности в автомобильной промышленности. Устройство обработки воздуха содержит: блок очистки воздуха, ароматический диспенсер; детектор воздуха, выполненный с возможностью обнаруживать очищенный воздух и создавать выходной сигнал;...
Тип: Изобретение
Номер охранного документа: 0002604013
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.90bf

Автостереоскопическое устройство отображения

Автостереоскопическое устройство отображения содержит устройство дисплея, содержащее массив разнесенных пикселей (50), световодное устройство, содержащее массив столбцов (51) световодов, и автостереоскопическое линзовое устройство (49), содержащее множество двояковыпуклых линз над световодным...
Тип: Изобретение
Номер охранного документа: 0002603947
Дата охранного документа: 10.12.2016
+ добавить свой РИД