×
13.01.2017
217.015.6c8a

Результат интеллектуальной деятельности: ТЕПЛОВАЯ ТРУБА И СПОСОБ ЕЕ ЗАЩИТЫ ОТ ДИФФУЗИОННОГО ВОДОРОДА

Вид РИД

Изобретение

№ охранного документа
0002597087
Дата охранного документа
10.09.2016
Аннотация: Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы с образованием диффузионного водорода. Способ защиты тепловой трубы от диффузии водорода заключается в том, что вокруг корпуса трубы с зазором устанавливают дополнительный кожух и зазор сообщают с устройством вакуумной откачки или с источником инертной среды и/или с источником среды, активно взаимодействующей с атомарным водородом. Изобретение обеспечивает повышение эффективности защиты тепловой трубы от проникновения водорода в полость тепловой трубы. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы с образованием диффузионного водорода.

В дальнейшем в рамках настоящей заявки будет использован термин «тепловая труба», означающая элемент системы охлаждения/нагревания, принцип работы которого основан на том, что в закрытых трубах из теплопроводящего металла находится легкокипящий теплоноситель. Перенос тепла происходит за счет того, что теплоноситель испаряется на горячем конце трубы, поглощая теплоту испарения, и конденсируется на холодном, откуда перемещается обратно на горячий конец трубы.

Известен (RU, патент 2359748, опубл. 02.08.2007) реактор для осуществления газофазных каталитических процессов, содержащий корпус, средства ввода исходных компонентов, средство вывода готового продукта, область размещения катализатора, узел подвода или отвода тепла, выполненный в виде множества тепловых труб. Часть каждой тепловой трубы отделена от остального внутреннего объема тепловой трубы мембраной, выполненной из газопроводящего материала, при этом отделенный мембраной объем тепловой трубы выполнен с возможностью сообщения с вакуумным насосом. Указанное выполнение тепловой трубы позволяет удалить диффузионный водород, прошедший из реакционного объема реактора внутрь корпуса тепловой трубы и предотвратить взаимодействие диффузионного водорода с теплоносителем, находящимся внутри корпуса тепловой трубы.

Недостатком известного технического решения следует признать его низкую эффективность относительно защиты теплоносителя в тепловой трубе от действия диффузного водорода.

Известен (RU, патент 2433863, опубл. 20.11.2011) реактор для осуществления газофазных реакций. Известный реактор содержит вертикальный корпус со средствами ввода и вывода исходных реагентов и продуктов реакции, а также катализаторный стол. Внутри корпуса установлен внутренний корпус, между корпусами и/или во внутреннем корпусе расположена зона размещения тепловых труб, концы которых расположены под катализаторным столом. На наружную поверхность тепловых труб нанесено покрытие, создающее барьер для проникновения водорода. В состав покрытия входит, по меньшей мере, один материал, выбранный из группы, содержащей алюминий, молибден, вольфрам, оксид алюминия, нитрид титана, карбид кремния, оксид кремния, оксид бария, оксид хрома в поликристаллическом и/или монокристаллическом состояниях.

Недостатком известного технического решения следует признать его низкую эффективность относительно защиты теплоносителя в тепловой трубе от действия диффузного водорода.

Данное техническое решение выбрано в качестве ближайшего аналога.

Техническая задача, решаемая посредством разработанного технического решения, состоит в усовершенствовании конструкции тепловой трубы.

Технический результат, достигаемый при реализации разработанного технического решения, состоит в повышении эффективности защиты тепловой трубы от проникновения водорода в полость тепловой трубы, приводящей к повышению ресурса работы тепловой трубы.

Для достижения указанного технического результата предложено использовать разработанную конструкцию тепловой трубы, а также способ защиты тепловой трубы от диффузионного водорода. Разработанная конструкция тепловой трубы отличается тем, что вокруг корпуса с зазором расположен кожух с образованием герметизированного пространства, сообщенного с устройством вакуумной откачки, или с источником инертной среды и/или с источником среды, активно взаимодействующей с атомарным водородом.

Атомарный диффузионный водород, образующийся при проведении газохимической реакции, проникает через материал кожуха в герметизированное пространство между корпусом тепловой трубы и указанным кожухом. Если герметизированное пространство вакуумировано и подключено к устройству вакуумной откачки, то атомы диффузионного водорода под действием вакуумного насоса перемещаются в объеме герметизированного пространства к входу в вакуумный насос, рекомбинируя при этом в молекулы водорода, и удаляются из герметизированного пространства. Если герметизированное пространство заполнено инертной средой (благородные газы, азот, пары органических ароматических соединений, находящиеся под давлением), то указанная инертная среда затрудняет диффузию атомарного водорода к поверхности корпуса тепловой трубы, уменьшая для диффузионного водорода возможность взаимодействия с теплоносителем в тепловой трубе. В случае заполнения герметизированного пространства инертной средой, активно взаимодействующей с атомарным диффузионным водородом, в герметизированном пространстве происходит связывание активного атомарного диффузионного водорода в неактивные, применительно диффузии через корпус тепловой трубы, соединения. В частности, в качестве подобной инертной среды могут быть использованы пары брома или йода. Образующийся при этом бромистый и йодистый водород в отсутствии паров воды в герметизированном пространстве инертен по отшению к материалу корпуса тепловой трубы. При этом поверхность корпуса тепловой трубы может быть покрыта изолирующим покрытием типа кремнийорганической эмали. Также может быть использован жидкий при температурах проведения газохимической реакции металл или интерметаллид, активно поглощающий водород (натрий, калий, алюминий и т.д.).

Также инертные газы или жидкость, заполняющая зазор между тепловой трубой и кожухом, являются проводником тепла и уменьшают тепловое сопротивление зазора между тепловой трубой и кожухом.

При реализации разработанной конструкции герметизированное пространство может быть сообщено каналом с вакуумным насосом. Обычно кожух выполнен из материала, устойчивого к действию компонентов проводимой газохимической реакции. Внутри тепловой трубы может быть установлена мембрана из материала, проницаемого дл водорода (никеля или никельсодержащего сплава). В этом случае внутренний объем тепловой трубы соединен с вакуумным насосом, вход которого расположен за указанной мембраной.

Для достижения указанного технического результата может быть также использован разработанный способ защиты тепловой трубы от диффузии водорода. При реализации разработанного способа вокруг корпуса тепловой трубы с зазором относительно корпуса устанавливают дополнительный кожух с образованием герметизированного пространства, сообщенного с устройством вакуумной откачки или с источником инертной среды и/или с источником среды, активно взаимодействующей с атомарным водородом.

Как отмечалось ранее в качестве газа, активно ваимодействующего с атомарным водородом, в некоторых вариантах реализации разработанного способа используют пары йода или брома.

В качестве инертной среды можно использовать благородные газы, азот, пары органических ароматических соединений, находящиеся под давлением.

Предпочтительно в зазор подают инертный газ и осуществляют его непрерывное или периодическое обновление. Обычно обновление газа в зазоре осуществляют в замкнутом циркуляционном контуре с устройством удаления водорода.

В качестве среды, заполняющей зазор между тепловой трубой и кожухом, можно использовать жидкость, в частности жидкий при температуре проведения газохимической реакции металл.

В некоторых вариантах реализации используемую жидкость прокачивают через зазор. Предпочтительно жидкость прокачивают в замкнутом циркуляционном контуре с устройством сепарации водорода.

На чертеже приведен разрез тепловой трубы, выполненной согласно разработанному техническому решению. При этом использованы следующие обозначения: тепловая труба 1, кожух 2, канал 3 к вакуумному насосу (не показан), герметизированное пространство (зазор) 4.

Разработанное техническое решение работает следующим образом.

Конец тепловой трубы 1, находящийся вне зоны проведения газохимической реакции, нагревают любым известным образом. Теплоноситель, находящийся в корпусе тепловой трубы 1, нагревается, возгоняется и перемещается в зону проведения газохимического процесса. Вокруг тепловой трубы 1 начинается процесс газохимической реакции. Образующийся в ходе газохимической реакции атомарный водород диффундирует через кожух 2 в герметизируемое пространство 4, в котором, в зависимости от вариантов реализации технического решения, он либо удаляется через канал 3, либо взаимодействует с находящимися там веществами.

При реализации разработанного технического решения применительно к газохимическому каталитическому процессу производства ситез-газа разработанное техническое решение работает следующим образом.

Процесс получения синтез-газа проводят в реакторе с тепловыми трубами разработанной конструкции с подключенным к вакуумному насосу герметизированным пространством в автотермическом режиме при атмосферном давлении в присутствии катализатора. Катализатор является сложным композитом, содержащим, мас. %: 4,5 смешанного оксида церия и циркония со структурой флюорита, 2,1 перовскита состава LaNi0,994Pt0,006, и выполнен на носителе на металлической основе, представляющей собой слоистый керамометаллический материал с соотношением толщины металлической основы к толщине непористого или малопористого оксидного покрытия 5:1. В реактор подают природный газ и воздух с расходами 24 л/мин природного газа и 62,9 л/мин воздуха при комнатной температуре (Т=20°C). Реакционная смесь поступает на монолитный каталитический блок, предварительно разогретый до температуры 880°C. Соотношение O2/C=0,54 в реакционной смеси. Время контакта 0,082 с, что соответствует газовой часовой объемной скорости 44·103 ч-1. Линейная скорость метано-воздушной смеси 0,13 м/с. Температура на катализаторе Т=1150°C. Образующий атомарный водород продиффундировал через кожух и был удален вакуумным насосом.

Ресурс работы тепловой трубы разработанной конструкции в указанном технологическом процессе превысил ресурс работы устройства - ближайшего аналога примерно в 1000 раз.


ТЕПЛОВАЯ ТРУБА И СПОСОБ ЕЕ ЗАЩИТЫ ОТ ДИФФУЗИОННОГО ВОДОРОДА
Источник поступления информации: Роспатент

Показаны записи 21-26 из 26.
12.07.2019
№219.017.b324

Конвектор для осуществления газофазных каталитических процессов

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы. Конвектор содержит корпус с входным и...
Тип: Изобретение
Номер охранного документа: 0002417834
Дата охранного документа: 10.05.2011
12.07.2019
№219.017.b326

Эжектор, устройство и способ подготовки к переработке газообразной смеси легких углеводородов

Изобретение относится к области переработки газообразных смесей легких углеводородов и может быть реализовано при утилизации попутных газов нефтедобычи, а также газовых смесей, являющихся побочным продуктом нефтепереработки. Описан эжектор, содержащий сопловый блок, сопло, первичную камеру...
Тип: Изобретение
Номер охранного документа: 0002412227
Дата охранного документа: 20.02.2011
12.07.2019
№219.017.b328

Система подачи ингибитора гидратообразования в трубопровод

Изобретение относится к системам введения ингибирующих веществ в газопроводы и может быть использовано при ингибировании образования гидратов газа в трубопроводе, применяемом для транспортирования газообразных углеводородов. Система содержит магистраль-источник ингибитора, два патрубка,...
Тип: Изобретение
Номер охранного документа: 0002456500
Дата охранного документа: 20.07.2012
12.07.2019
№219.017.b329

Реактор для проведения газофазных каталитических реакций (варианты)

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы. Реактор содержит корпус с патрубками...
Тип: Изобретение
Номер охранного документа: 0002456069
Дата охранного документа: 20.07.2012
21.12.2019
№219.017.efd5

Способ подачи реагента в трубопровод

Изобретение относится к способу транспортировки газовых продуктов с ингибированием образования в текучей среде препятствующих транспортировке продуктов, а именно к способам введения ингибирующих веществ в трубопроводы, и может быть использовано при ингибировании образования гидратов газа в...
Тип: Изобретение
Номер охранного документа: 0002709590
Дата охранного документа: 18.12.2019
20.02.2020
№220.018.03f4

Система регулируемого поднятия давления низконапорного газа

Изобретение относится к области перемещения текучих сред по трубопроводам, а именно к системе транспортирования газа с низким давлением, и может быть использовано при необходимости изменения динамических и расходных характеристик перемещаемой текучей среды, предпочтительно, при изменении...
Тип: Изобретение
Номер охранного документа: 0002714589
Дата охранного документа: 18.02.2020
Показаны записи 21-30 из 34.
19.04.2019
№219.017.3226

Центробежный сепарационный элемент

Изобретение относится к технике разделения газожидкостных потоков и может быть использовано в различных отраслях промышленности, например газоперерабатывающей. Центробежный сепарационный элемент содержит обечайку с ловушкой отделенной жидкости и завихритель. Внутри обечайки соосно ей размещено...
Тип: Изобретение
Номер охранного документа: 0002455050
Дата охранного документа: 10.07.2012
14.05.2019
№219.017.51c7

Активная зона ядерного реактора

Изобретение относится к области ядерной энергетики и может быть использовано в реакторах с прямым преобразованием энергии в электрическую. Активная зона ядерного реактора включает по меньшей мере один модуль, а также твердый и жидкий замедлители нейтронов. Модуль содержит корпус, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002687288
Дата охранного документа: 13.05.2019
09.06.2019
№219.017.7942

Термоэмиссионный электрогенерирующий модуль активной зоны ядерного реактора с прямым преобразованием энергии

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано в качестве источника электропитания в составе космической ядерной энергетической установки. Термоэмиссионный электрогенерирующий модуль ядерного реактора с прямым преобразованием энергии...
Тип: Изобретение
Номер охранного документа: 0002347291
Дата охранного документа: 20.02.2009
09.06.2019
№219.017.7ea0

Система регулируемого поднятия давления низконапорного газа

Изобретение относится к системе транспортирования газа с низким давлением и может быть использовано при необходимости изменения динамических и расходных характеристик перемещаемой текучей среды, предпочтительно, при изменении расхода перемещаемого газа в трубопроводе. Система содержит несколько...
Тип: Изобретение
Номер охранного документа: 0002435099
Дата охранного документа: 27.11.2011
09.06.2019
№219.017.7fa2

Конвертор и элемент тепловой трубы конвертора

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы. Конвертор содержит корпус, узел подачи...
Тип: Изобретение
Номер охранного документа: 0002466786
Дата охранного документа: 20.11.2012
03.07.2019
№219.017.a4b7

Система и способ регулируемого поднятия давления низконапорного газа

Система и способ предназначены для регулируемого поднятия давления транспортируемого газа с низким давлением. Система содержит, по меньше мере, два параллельно установленных эжектора, параллельно которым дополнительно установлен регулирующий клапан магистрали перепуска активной текучей среды. К...
Тип: Изобретение
Номер охранного документа: 0002415307
Дата охранного документа: 27.03.2011
12.07.2019
№219.017.b324

Конвектор для осуществления газофазных каталитических процессов

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы. Конвектор содержит корпус с входным и...
Тип: Изобретение
Номер охранного документа: 0002417834
Дата охранного документа: 10.05.2011
12.07.2019
№219.017.b326

Эжектор, устройство и способ подготовки к переработке газообразной смеси легких углеводородов

Изобретение относится к области переработки газообразных смесей легких углеводородов и может быть реализовано при утилизации попутных газов нефтедобычи, а также газовых смесей, являющихся побочным продуктом нефтепереработки. Описан эжектор, содержащий сопловый блок, сопло, первичную камеру...
Тип: Изобретение
Номер охранного документа: 0002412227
Дата охранного документа: 20.02.2011
12.07.2019
№219.017.b328

Система подачи ингибитора гидратообразования в трубопровод

Изобретение относится к системам введения ингибирующих веществ в газопроводы и может быть использовано при ингибировании образования гидратов газа в трубопроводе, применяемом для транспортирования газообразных углеводородов. Система содержит магистраль-источник ингибитора, два патрубка,...
Тип: Изобретение
Номер охранного документа: 0002456500
Дата охранного документа: 20.07.2012
12.07.2019
№219.017.b329

Реактор для проведения газофазных каталитических реакций (варианты)

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы. Реактор содержит корпус с патрубками...
Тип: Изобретение
Номер охранного документа: 0002456069
Дата охранного документа: 20.07.2012
+ добавить свой РИД