×
13.01.2017
217.015.6c12

Результат интеллектуальной деятельности: СПОСОБ ИМИТАЦИИ СИГНАЛА РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

№ охранного документа
0002592643
Дата охранного документа
27.07.2016
Аннотация: Изобретение относится к области реакторных измерений и может быть использовано для настройки реактиметров и оперативной проверки их работоспособности. Способ имитации сигнала реактивности ядерного реактора включает формирование массива данных, соответствующих изменению во времени мощностного параметра реактора для заданной реактивности, сохранение этого массива данных и его использование для управления выходным устройством, формирующим сигнал, соответствующий заданной реактивности. С помощью ионизационной камеры деления (ИКД), источника нейтронов и усилительно-преобразовательной аппаратуры регистрируют зависимость скорости счета импульсов тока ИКД, пропорциональной плотности нейтронного потока от ее расстояния до источника нейтронов. Задают величину реактивности и формируют в устройстве памяти зависимость мощностного параметра реактора от времени, соответствующую заданной реактивности. Перемещают ионизационную камеру деления относительно источника нейтронов, задавая величину расстояния от ИКД до источника нейтронов в зависимости от времени, при этом сигнал с ИКД используют для формирования сигнала, соответствующего заданной реактивности. Технический результат - увеличение точности настройки реактиметра и, как следствие, повышение достоверности измерений реактивности ядерного реактора. 2 ил.

Изобретение относится к области реакторных измерений и может быть использовано для настройки приборов измерения реактивности ядерных реакторов (реактиметров) и оперативной проверки их работоспособности.

В процессе пуска ядерного реактора, вывода его на минимально контролируемый уровень мощности, при работе реактора на мощности, а также при нейтронно-физических измерениях, периодически проводимых во время кампании с целью определения текущих характеристик ядерного реактора, вычисляется его реактивность в динамических режимах с помощью специальных приборов - реактиметров. При настройке и проверке работоспособности реактиметров применяются аналоговые или цифровые имитаторы реактивности, использующие при формировании выходного сигнала решение уравнений кинетики ядерного реактора.

Известен способ имитации сигнала реактивности, реализованный в [Патент RU №2211485], при котором формируют аналоговый сигнал, соответствующий изменению во времени мощностного параметра реактора для заданной реактивности, и по нему формируют выходные сигналы имитатора.

Недостатком такого способа является то, что при его реализации, во-первых, имеет место весьма значительное время готовности имитатора к работе (до десяти минут) при переходе от одного режима к другому. Во-вторых, в процессе формирования выходного сигнала в импульсном режиме амплитуда выходных импульсов напряжения имитатора одинакова, а интервалы между импульсами носят регулярный характер, что не соответствует спектрометрическому характеру потока импульсов с детектора нейтронов, помещенного в реальный ядерный реактор, и снижает точность проводимой в соответствии с этим способом настройки реактиметра.

Известен способ имитации сигнала реактивности, реализованный в [патент RU 2287853], включающий формирование массива данных, соответствующих изменению во времени мощностного параметра реактора для заданной реактивности, сохранение этого массива данных в относительных единицах в устройстве памяти и его использование для управления выходным устройством, формирующим сигнал, соответствующий заданной реактивности. Данный способ наиболее близок к предлагаемому. В этом способе устранен недостаток способа, описанного в патенте RU №2211485, связанный с большим временем готовности имитатора к работе при переходе от одного режима к другому, но сохраняется недостаток, связанный с отсутствием спектрометрического характера потока выходных импульсов имитатора, соответствующего характеру потока импульсов с детектора нейтронов, используемого в реальных условиях ядерного реактора. Следствием такого отсутствия является недостаточно высокая точность настройки реактиметра, производимой с помощью имитатора, работа которого основана на этом способе имитации сигнала реактивности.

Предлагаемым изобретением решается задача увеличения точности настройки реактиметра и, как следствие, повышение достоверности измерений реактивности ядерного реактора.

Указанный технический результат достигается тем, что в известном способе имитации сигнала реактивности ядерного реактора, включающем формирование массива данных, соответствующих изменению во времени мощностного параметра реактора для заданной реактивности, сохранение этого массива данных в относительных единицах в устройстве памяти и его использование для управления выходным устройством, формирующим сигнал, соответствующий заданной реактивности, согласно изобретению с помощью ионизационной камеры деления (ИКД), источника нейтронов и усилительно-преобразовательной аппаратуры регистрируют зависимость скорости счета импульсов тока ИКД, пропорциональной плотности нейтронного потока, от ее расстояния до источника нейтронов, нормируют эту зависимость на заданное число X и сохраняют в относительных единицах в виде первого массива данных в устройстве памяти, задают величину реактивности и формируют в устройстве памяти зависимость мощностного параметра реактора от времени, соответствующую заданной реактивности, нормируют эту зависимость на то же число X и сохраняют в относительных единицах в виде второго массива данных, затем сопоставляют последовательные во времени нормированные значения мощностного параметра из второго массива данных с равными им нормированными значениями плотности нейтронного потока из первого массива данных и находят значения расстояния от ИКД до источника нейтронов, соответствующие этим нормированным значениям, сохраняют их в устройстве памяти в виде третьего массива данных, определяющих зависимость расстояния от ИКД до источника нейтронов от времени, перемещают ионизационную камеру деления относительно источника нейтронов, задавая величину расстояния от ИКД до источника нейтронов в зависимости от времени по значениям третьего массива данных, при этом сигнал с ИКД используют для формирования сигнала, соответствующего заданной реактивности.

Признаки, отличающие предлагаемый способ от наиболее близкого к нему известного способа по патенту RU №2287853:

- регистрируют зависимость скорости счета импульсов тока ИКД, пропорциональной плотности нейтронного потока, от ее расстояния до источника нейтронов;

- нормируют зависимость скорости счета импульсов тока ИКД от ее расстояния до источника нейтронов на заданное число X и сохраняют в относительных единицах в виде первого массива данных в устройстве памяти;

- задают величину реактивности и формируют в устройстве памяти зависимость мощностного параметра реактора от времени, соответствующую заданной реактивности,

- нормируют зависимость мощностного параметра реактора от времени, соответствующую заданной реактивности, на то же число X и сохраняют в относительных единицах в виде второго массива данных;

- сопоставляют последовательные во времени нормированные значения мощностного параметра из второго массива данных с равными им нормированными значениями плотности нейтронного потока из первого массива данных;

- находят значения расстояния от ИКД до источника нейтронов, соответствующие этим нормированным значениям, сохраняют их в устройстве памяти в виде третьего массива данных, определяющих зависимость расстояния от ИКД до источника нейтронов от времени;

- перемещают ионизационную камеру деления относительно источника нейтронов, задавая величину расстояния от ИКД до источника нейтронов в зависимости от времени по значениям третьего массива данных;

- используют сигнал с ИКД для формирования сигнала, соответствующего заданной реактивности.

Совокупность вышеуказанных отличительных признаков позволяет при реализации способа в устройстве обеспечить качественно новые характеристики выходного сигнала имитатора, а именно организовать его в виде спектрометрического потока импульсов напряжения со случайным распределением импульсов по амплитуде и случайным распределением временных интервалов между импульсами, что соответствует реальным процессам в ядерном реакторе, а следовательно, увеличить точность настройки реактиметра, производимой с помощью такого имитатора, и тем самым обеспечить большую достоверность измерений реактивности при использовании реактиметра на реальном ядерном реакторе.

На фиг. 1 приведены диаграммы, иллюстрирующие преобразование массивов данных. В первом квадранте в относительных единицах N [o.e] приведен нормированный на X график зависимости скорости счета, пропорциональной плотности нейтронного потока, от расстояния S между ионизационной камерой деления и источником нейтронов. Этот график соответствует первому массиву данных bi, сохраняемых в устройстве памяти. Во втором квадранте приведен в относительных единицах Р [о.е] нормированный на X график зависимости мощностного параметра ядерного реактора от времени для заданной величины реактивности. Этот график соответствует второму массиву данных а, сохраняемых в устройстве памяти. В четвертом квадранте приведен график зависимости расстояния S между ионизационной камерой деления и источником нейтронов от времени t, построенный сопоставлением первого и второго массивов данных. Этот график соответствует третьему массиву данных ci, сохраняемых в устройстве памяти. Стрелками на диаграмме показан порядок нахождения данных третьего массива, используемых в дальнейшем для формирования сигнала, соответствующего заданной реактивности.

На фиг. 2 приведены графики изменения расстояния между ионизационной камерой деления и источником нейтронов во времени.

На фиг. 2а приведены графики изменения расстояния между ионизационной камерой деления и источником нейтронов во времени для заданных отрицательных значений реактивностей ρ=-0,1 β, ρ=-0,5 β, ρ=-1 β, а на фиг. 2b - для заданных положительных значений реактивностей ρ=0,1 β, ρ=0,2 β, ρ=0.3 β, где β - эффективная доля запаздывающих нейтронов. Расстояния отложены по осям ординат в метрах, время отложено по осям абсцисс в секундах.

Работа предложенного способа осуществляется следующим образом.

На первом этапе перемещают ИКД относительно источника нейтронов и с помощью усилительно-преобразовательной аппаратуры регистрируют в фиксированных точках скорость счета импульсов тока ИКД, пропорциональную плотности нейтронного потока, таким образом получают зависимость, пропорциональную плотности нейтронного потока, от расстояния до источника нейтронов. Полученную зависимость нормируют на произвольно заданное число X и сохраняют ее в относительных единицах в виде первого массива данных в устройстве памяти.

На втором этапе задают величину реактивности с фиксированным значением и формируют в устройстве памяти зависимость мощностного параметра реактора от времени, соответствующую заданной реактивности. Эту зависимость вычисляют в соответствии с известными уравнениями кинетики ядерного реактора [Кипин Дж.Р. Физические основы кинетики ядерных реакторов. Пер. с англ. М.: Атомиздат, 1967 г. ]. Далее нормируют эту зависимость на то же число X и сохраняют ее в относительных единицах в виде второго массива данных в устройстве памяти.

На третьем этапе, который иллюстрируется диаграммой, представленной на фиг. 1, сопоставляют последовательные во времени нормированные значения мощностного параметра из второго массива данных с равными им нормированными значениями плотности нейтронного потока из первого массива данных (точки ai и bi соответственно) и находят значения расстояния S от ИКД до источника нейтронов, соответствующие этим нормированным значениям, сохраняют их в устройстве памяти в виде третьего массива данных (точки ci), определяющих зависимость расстояния от ИКД до источника нейтронов от времени.

На четвертом этапе перемещают ионизационную камеру деления относительно источника нейтронов, задавая величину расстояния от ИКД до источника нейтронов в зависимости от времени S(t) по значениям третьего массива данных. На фиг. 2 приведены графики, иллюстрирующие изменение расстояния между ионизационной камерой деления и источником нейтронов во времени S(t) для различных заданных положительных и отрицательных значений реактивности. При построении графиков была использована зависимость плотности нейтронного потока от расстояния до источника нейтронов (база 2 м) для поверочной установки нейтронного излучения УКПН с формирователем поля тепловых нейтронов с источником ИБН-24.

На пятом, последнем, этапе в процессе перемещения ИКД ее сигнал используют для формирования сигнала усилительно-преобразовательной аппаратуры, соответствующего заданной реактивности. Этот сигнал используется при настройке реактиметра.

Таким образом, описанный выше способ имитации сигнала реактивности благодаря своим отличительным признакам позволяет при его реализации в устройстве увеличить точность настройки реактиметра за счет качественно новых характеристик выходного сигнала имитатора, организованного в виде спектрометрического потока импульсов напряжения со случайными распределениями временных интервалов между импульсами и случайным распределением импульсов по амплитуде. В этом случае выходной сигнал имитатора по амплитудно-временным характеристикам соответствует реальным процессам в ядерном реакторе, а следовательно, использование реактиметра, настроенного с помощью такого имитатора, увеличивает достоверность в измерениях реактивности на реальном ядерном реакторе.

При практической реализации способа могут быть использованы в качестве ИКД - камера КНК15-1, в качестве движителя - профильные рельсы LLTHC 15 SA-T1 Р5 с кареткой LLTHC 15 SA и максимальной базой до 4 м, в качестве двигателя - шаговые двигатели серии ASD-A2 с редуктором и ременным зубчатым ремнем.

Способ имитации сигнала реактивности ядерного реактора, включающий формирование массива данных, соответствующих изменению во времени мощностного параметра реактора для заданной реактивности, сохранение этого массива данных в относительных единицах в устройстве памяти и его использование для управления выходным устройством, формирующим сигнал, соответствующий заданной реактивности, отличающийся тем, что с помощью ионизационной камеры деления, источника нейтронов и усилительно-преобразовательной аппаратуры регистрируют зависимость скорости счета импульсов тока ионизационной камеры деления, пропорциональной плотности нейтронного потока, от ее расстояния до источника нейтронов, нормируют эту зависимость на заданное число X и сохраняют в относительных единицах в виде первого массива данных в устройстве памяти, задают величину реактивности и формируют в устройстве памяти зависимость мощностного параметра реактора от времени, соответствующую заданной реактивности, нормируют эту зависимость на то же число X и сохраняют в относительных единицах в виде второго массива данных, затем сопоставляют последовательные во времени нормированные значения мощностного параметра из второго массива данных с равными им нормированными значениями плотности нейтронного потока из первого массива данных и находят значения расстояния от ионизационной камеры деления до источника нейтронов, соответствующие этим нормированным значениям, сохраняют их в устройстве памяти в виде третьего массива данных, определяющих зависимость расстояния от ионизационной камеры деления до источника нейтронов от времени, перемещают ионизационную камеру деления относительно источника нейтронов, задавая величину расстояния от ионизационной камеры деления до источника нейтронов в зависимости от времени по значениям третьего массива данных, при этом сигнал с ионизационной камеры деления используют для формирования сигнала, соответствующего заданной реактивности.
СПОСОБ ИМИТАЦИИ СИГНАЛА РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА
СПОСОБ ИМИТАЦИИ СИГНАЛА РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА
СПОСОБ ИМИТАЦИИ СИГНАЛА РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 50.
20.01.2013
№216.012.1c25

Способ обезвреживания токсичных промышленных отходов

Изобретение относится к области химии. Отработанные растворы антифриза, содержащие этиленгликоль, и сернокислотного электролита смешивают при весовом отношении этиленгликоля к серной кислоте от 1,0:0,1 до 1,0:1,5, в пересчете на безводные компоненты. После чего полученную смесь подвергают...
Тип: Изобретение
Номер охранного документа: 0002472699
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d5f

Способ обезвреживания минерализованных сточных вод атомных и тепловых электрических станций

Изобретение относится к способам переработки (обезвреживания) сбросных минерализованных вод атомных и тепловых электростанций, содержащих этаноламин. Способ обезвреживания включает предварительную дистилляцию указанных вод с получением конденсата и кубового остатка, концентрирование кубового...
Тип: Изобретение
Номер охранного документа: 0002473013
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2871

Способ измерения реактивности ядерного реактора

Изобретение относится к области реакторных измерений, а именно к способу измерения реактивности ядерного реактора, при котором сигналы с камеры деления преобразуют в физический параметр. По изменению во времени величины этого параметра, путем решения обращенного уравнения кинетики реактора, с...
Тип: Изобретение
Номер охранного документа: 0002475873
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.287a

Биполярный ионизационный источник

Изобретение относится к газовому анализу и может быть использовано для одновременной ионизации в положительной и отрицательной модах частиц веществ, находящихся в газе, в том числе в воздухе. Сущность изобретения: биполярный ионизационный источник включает камеру ионизации, продуваемую потоком...
Тип: Изобретение
Номер охранного документа: 0002475882
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c4f

Способ разделения и регистрации ионов в газе (варианты)

Изобретение относится к области газового анализа и может быть использовано для решения задач разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе. Изобретение может быть также использовано как основа для газохроматографического детектирования. В...
Тип: Изобретение
Номер охранного документа: 0002476870
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.5509

Система дистанционного радиационного контроля

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. Система содержит пульт оператора с персональной ЭВМ с автономным блоком питания и средствами отображения информации и две подсистемы, каждая из которых включает: блок сбора, первичной обработки и анализа...
Тип: Изобретение
Номер охранного документа: 0002487372
Дата охранного документа: 10.07.2013
10.10.2013
№216.012.7285

Устройство для электрохимической деоксигенации высокочистой воды

Изобретение относится к электрохимическим устройствам очистки воды, а именно к устройствам деоксигенации высокочистой воды. Устройство для электрохимической деоксигенации высокочистой воды содержит мембранный электролизер 1, состоящий по крайней мере из одной ячейки для мембранного электролиза,...
Тип: Изобретение
Номер охранного документа: 0002494974
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8362

Способ контроля содержания урана в технологических средах ядерных энергетических установок

Изобретение относится к области аналитической радиохимии и обеспечения безопасности эксплуатации ядерных энергетических установок (ЯЭУ). Контроль содержания урана в технологических средах ЯЭУ осуществляют следующим образом: отбирают пробу технологической среды, подщелачивают ее до рН 9-11...
Тип: Изобретение
Номер охранного документа: 0002499310
Дата охранного документа: 20.11.2013
27.03.2014
№216.012.af18

Способ обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях

Заявленное изобретение относится к способам обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях. В заявленном способе предусмотрено отстаивание...
Тип: Изобретение
Номер охранного документа: 0002510539
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.bb35

Способ автоматического измерения активности радионуклидов в газообразных средах и устройство для его реализации

Изобретение относится к средствам спектрометрических измерений и может быть использовано в атомной энергетике для измерения активности радионуклидов в высокоактивных газообразных средах. Сущность изобретения заключается в том, что контролируемую среду перед направлением в измерительную камеру...
Тип: Изобретение
Номер охранного документа: 0002513653
Дата охранного документа: 20.04.2014
Показаны записи 1-10 из 28.
20.01.2013
№216.012.1c25

Способ обезвреживания токсичных промышленных отходов

Изобретение относится к области химии. Отработанные растворы антифриза, содержащие этиленгликоль, и сернокислотного электролита смешивают при весовом отношении этиленгликоля к серной кислоте от 1,0:0,1 до 1,0:1,5, в пересчете на безводные компоненты. После чего полученную смесь подвергают...
Тип: Изобретение
Номер охранного документа: 0002472699
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d5f

Способ обезвреживания минерализованных сточных вод атомных и тепловых электрических станций

Изобретение относится к способам переработки (обезвреживания) сбросных минерализованных вод атомных и тепловых электростанций, содержащих этаноламин. Способ обезвреживания включает предварительную дистилляцию указанных вод с получением конденсата и кубового остатка, концентрирование кубового...
Тип: Изобретение
Номер охранного документа: 0002473013
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2871

Способ измерения реактивности ядерного реактора

Изобретение относится к области реакторных измерений, а именно к способу измерения реактивности ядерного реактора, при котором сигналы с камеры деления преобразуют в физический параметр. По изменению во времени величины этого параметра, путем решения обращенного уравнения кинетики реактора, с...
Тип: Изобретение
Номер охранного документа: 0002475873
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.287a

Биполярный ионизационный источник

Изобретение относится к газовому анализу и может быть использовано для одновременной ионизации в положительной и отрицательной модах частиц веществ, находящихся в газе, в том числе в воздухе. Сущность изобретения: биполярный ионизационный источник включает камеру ионизации, продуваемую потоком...
Тип: Изобретение
Номер охранного документа: 0002475882
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c4f

Способ разделения и регистрации ионов в газе (варианты)

Изобретение относится к области газового анализа и может быть использовано для решения задач разделения и регистрации ионов в газе, например ионов взрывчатых или наркотических веществ в воздухе. Изобретение может быть также использовано как основа для газохроматографического детектирования. В...
Тип: Изобретение
Номер охранного документа: 0002476870
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.5509

Система дистанционного радиационного контроля

Изобретение относится к средствам дистанционного контроля радиационного состояния объекта. Система содержит пульт оператора с персональной ЭВМ с автономным блоком питания и средствами отображения информации и две подсистемы, каждая из которых включает: блок сбора, первичной обработки и анализа...
Тип: Изобретение
Номер охранного документа: 0002487372
Дата охранного документа: 10.07.2013
10.10.2013
№216.012.7285

Устройство для электрохимической деоксигенации высокочистой воды

Изобретение относится к электрохимическим устройствам очистки воды, а именно к устройствам деоксигенации высокочистой воды. Устройство для электрохимической деоксигенации высокочистой воды содержит мембранный электролизер 1, состоящий по крайней мере из одной ячейки для мембранного электролиза,...
Тип: Изобретение
Номер охранного документа: 0002494974
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8362

Способ контроля содержания урана в технологических средах ядерных энергетических установок

Изобретение относится к области аналитической радиохимии и обеспечения безопасности эксплуатации ядерных энергетических установок (ЯЭУ). Контроль содержания урана в технологических средах ЯЭУ осуществляют следующим образом: отбирают пробу технологической среды, подщелачивают ее до рН 9-11...
Тип: Изобретение
Номер охранного документа: 0002499310
Дата охранного документа: 20.11.2013
27.03.2014
№216.012.af18

Способ обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях

Заявленное изобретение относится к способам обезвреживания жидких радиоактивных отходов ядерных энергетических установок, загрязненных нефтепродуктами, продуктами коррозии и синтетическими поверхностно-активными веществами, в полевых условиях. В заявленном способе предусмотрено отстаивание...
Тип: Изобретение
Номер охранного документа: 0002510539
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.bb35

Способ автоматического измерения активности радионуклидов в газообразных средах и устройство для его реализации

Изобретение относится к средствам спектрометрических измерений и может быть использовано в атомной энергетике для измерения активности радионуклидов в высокоактивных газообразных средах. Сущность изобретения заключается в том, что контролируемую среду перед направлением в измерительную камеру...
Тип: Изобретение
Номер охранного документа: 0002513653
Дата охранного документа: 20.04.2014
+ добавить свой РИД