×
13.01.2017
217.015.6ad8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА FeNi/C В ПРОМЫШЛЕННЫХ МАСШТАБАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов. Выпаривание растворителя проводят при температуре 70÷90°C. Термообработку твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6-14 часов при температуре 150÷200°C, и финальный нагрев в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°C и выдержкой 30÷60 минут при соответствующих температурах. 1 пр.

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi3/C.

Одним из способов получения наночастиц FeNi3 является восстановление в гидразине N2H4·H2O солей FeCl2·4H2O и NiCl2·6H2O, предварительно растворенных в деионизованной воде [Xuegang Lu, Gongying Liang, Yumei Zhang. Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution // Material Science and Engineering B. 2007. V. 139. PP. 124-127]. К недостаткам этого способа следует отнести отсутствие стабилизирующей среды для наночастиц FeNi3 и длительное время реакции, составляющее 24 часа, что затрудняет возможность контролировать размер частиц и однородность их распределения.

Для применения в области высоких частот наночастицы FeNi3 инкапсулируют SiO2, таким образом увеличивая сопротивление композита. Наночастицы FeNi3 приготавливают с помощью химического восстановления солей FeCl2·4H2O и NiCl2·6H2O в гидразин гидрате N2H4·H2O (С=80%). При этом в качестве поверхностно-активного вещества используют полиэтиленгликоль. Время реакции составляет 24 часа при комнатной температуре. В процессе реакции рН контролируется и поддерживается в интервале 12≤рН≤13 [X. Lu, G. Liang, Q. Sun, С. Yang. High-frequency magnetic properties of FeNi3-SiO2 nanocomposite synthesized by a facile chemical method. // Journal of Alloys and Compounds. 2011. V. 509. PP. 5079-5083]. К недостаткам этого способа синтеза наночастиц FeNi3 можно отнести сложность контролирования размера и фазовый состав наночастиц из-за флуктуаций условий реакции (температура, рН, концентрация реагентов) в процессе длительной реакции восстановления.

Другой способ получения нанокомпозита FeNi3/C заключается в инфракрасном нагреве смеси на основе FeCl3·6H2O, NiCl2·6H2O и полиакрилонитрила (ПАН) при давлении 10-3÷10-2 мм рт. ст. до 700°С в течение от 1 до 30 мин [Кожитов Л.В., Козлов В.В., Костикова А.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Патент на изобретение №2455225. Бюл. №19. 10.07.2012]. Недостатками этого способа являются следующие ограничения: обработка с помощью ИК-излучения требует автоматизированных устройств для синтеза наноматериала в промышленных масштабах, которые не производятся; обработка с помощью ИК-излучения происходит в вакууме (Р=10-3÷10-2 мм рт. ст.), получение которого сопряжено с усложнением конструкции реактора, необходимостью использования вакуумного насоса. Кроме того, проведение пиролиза полиакрилонитрила в вакууме способствует уменьшению углеродного остатка и уменьшению количества получаемого наноматериала.

Техническим результатом является получение нанокомпозита FeNi3/C, содержащего наночастицы FeNi3 с размером от 12 до 85 нм, при термообработке композита FeCl3·6H2O/NiCl2·6H2O/ПАН/Графит.

Технический результат достигается следующим образом.

Способ синтеза нанокомпозита FeNi3/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде осуществляют при температуре 50-70°С, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля от 1 до 3 мас. % от массы полиакрилонитрила и графита до полного растворения компонентов, выпаривание растворителя проводят при температурах 70-90°С, термообработка твердого остатка осуществляют в несколько этапов, предварительный нагрев на воздухе в течение 6-14 часов при температурах 150-200°С, и финальный нагрев осуществляют в атмосфере N2 при температуре от 500 до 900°С с интервалом подъема температуры 100°С и выдержкой 30-60 минут при соответствующих температурах с образованием наночастиц FeNi3 с размером частиц от 12 до 85 нм.

Для измерения размеров наночастиц FeNi3 использованы рентгеновский дифрактометр ДРОН-1,5 (CuKα-излучение) с модернизированной коллимацией и метод сканирующей электронной микроскопии (СЭМ) с использованием низковакуумного растрового двухлучевого электронного микроскопа Quanta 3D FEG. Средний размер кристаллитов (LC) интерметаллида FeNi3 рассчитан из рентгеновских спектров с помощью уравнения Дебая-Шерера:

LC=kλ/Bcosθ,

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ=1,54056 - длина волны рентгеновского CuKα-излучения, Θ - дифракционный угол, град.

Пример. Для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 % были использованы хлорид железа (III) шестиводный (FeCl3·6H2O), х.ч.; хлорид никеля (II) шестиводный (NiCl2·6H2O), х.ч.; полиакрилонитрил (ПАН); порошок графита (Гр); диметилформамид (ДМФА), х.ч. Были приготовлены следующие навески для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 %: m(ПАН)=50 г; m(Гр)=50 г; m(NiCl2·6H2O)=120,5 г; m(FeCl3·6H2O)=42,27 г. На первом этапе получили совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН, высыпав заготовленные навески, в ДМФА (V=800 мл). Для ускорения растворения необходимо перемешивать раствор при 60°С. Время приготовления раствора составило 4 час. Приготовленный порошок графита нагревали в муфеле при 350°С в течение 3 часов. Затем графитовый порошок добавили в совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН в ДМФА. Полученную смесь перемешивали в течение 30 мин при 60°С.

На втором этапе выпаривали растворитель ДМФА. Для этого раствор разлили в четыре фарфоровые чашки (V=250 мл). Чашки с раствором выдерживали при 80°С в течение 22 часов с использованием нагревательной плитки ES-H3040 (фирма Экрос) до образования вязкой массы.

Предварительная термическая обработка композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O на воздухе при 200°С осуществляли в муфеле в течение 14 часов. В результате получена твердая масса. Масса была размолота с использованием ступки и пестика.

Синтез нанокомпозита FeNi3/C из композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O происходил на стадии термической обработки в атмосфере N2 с использованием промышленной установки.

Для термической обработки были использованы три графитовые кюветы, которые одновременно помещались в реактор. Был применен ступенчатый нагрев. Температура нагрева и время выдержки (t) композита при этой температуре на каждой ступени указаны ниже: 1) 300°С; t=1 час. После термической обработки при 300°С три кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. Для дальнейшей термической обработки были использованы две графитовые кюветы в результате убыли веса массы композита из-за процессов карбонизации полимера и разложения солей, содержащихся в композите.

После загрузки двух кювет в установку был продолжен ступенчатый нагрев со следующими параметрами: 2) 400°С; t=1 час; 3) 500°С; t=30 мин; 4) 600°С; t=30 мин. После термической обработки при 600°С две кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. После загрузки двух кювет в реактор установки был продолжен ступенчатый нагрев со следующими параметрами: 5) 700°С; t=1 час; 6) 800°С; t=1 час; 7) 900°С; t=30 мин.

После термической обработки при 900°С две кюветы с композитом были извлечены из реактора установки. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика.

Полученный нанокомпозит FeNi3/C содержал наночастицы FeNi3 с размером в диапазоне от 12 до 85 нм, установленном с помощью методов рентгеновской дифрактометрии и сканирующей электронной микроскопии.

Способ синтеза нанокомпозита FeNi/C, включающий приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка, отличающийся тем, что приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов, выпаривание растворителя проводят при температуре 70÷90°С, термообработка твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6÷14 часов при температуре 150÷200°С, и финальный нагрев - в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°С и выдержкой 30÷60 минут при соответствующих температурах с образованием наночастиц FeNi с размером частиц от 12 до 85 нм.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 347.
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
Показаны записи 21-30 из 216.
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
+ добавить свой РИД