×
13.01.2017
217.015.6ad8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА FeNi/C В ПРОМЫШЛЕННЫХ МАСШТАБАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов. Выпаривание растворителя проводят при температуре 70÷90°C. Термообработку твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6-14 часов при температуре 150÷200°C, и финальный нагрев в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°C и выдержкой 30÷60 минут при соответствующих температурах. 1 пр.

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi3/C.

Одним из способов получения наночастиц FeNi3 является восстановление в гидразине N2H4·H2O солей FeCl2·4H2O и NiCl2·6H2O, предварительно растворенных в деионизованной воде [Xuegang Lu, Gongying Liang, Yumei Zhang. Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution // Material Science and Engineering B. 2007. V. 139. PP. 124-127]. К недостаткам этого способа следует отнести отсутствие стабилизирующей среды для наночастиц FeNi3 и длительное время реакции, составляющее 24 часа, что затрудняет возможность контролировать размер частиц и однородность их распределения.

Для применения в области высоких частот наночастицы FeNi3 инкапсулируют SiO2, таким образом увеличивая сопротивление композита. Наночастицы FeNi3 приготавливают с помощью химического восстановления солей FeCl2·4H2O и NiCl2·6H2O в гидразин гидрате N2H4·H2O (С=80%). При этом в качестве поверхностно-активного вещества используют полиэтиленгликоль. Время реакции составляет 24 часа при комнатной температуре. В процессе реакции рН контролируется и поддерживается в интервале 12≤рН≤13 [X. Lu, G. Liang, Q. Sun, С. Yang. High-frequency magnetic properties of FeNi3-SiO2 nanocomposite synthesized by a facile chemical method. // Journal of Alloys and Compounds. 2011. V. 509. PP. 5079-5083]. К недостаткам этого способа синтеза наночастиц FeNi3 можно отнести сложность контролирования размера и фазовый состав наночастиц из-за флуктуаций условий реакции (температура, рН, концентрация реагентов) в процессе длительной реакции восстановления.

Другой способ получения нанокомпозита FeNi3/C заключается в инфракрасном нагреве смеси на основе FeCl3·6H2O, NiCl2·6H2O и полиакрилонитрила (ПАН) при давлении 10-3÷10-2 мм рт. ст. до 700°С в течение от 1 до 30 мин [Кожитов Л.В., Козлов В.В., Костикова А.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Патент на изобретение №2455225. Бюл. №19. 10.07.2012]. Недостатками этого способа являются следующие ограничения: обработка с помощью ИК-излучения требует автоматизированных устройств для синтеза наноматериала в промышленных масштабах, которые не производятся; обработка с помощью ИК-излучения происходит в вакууме (Р=10-3÷10-2 мм рт. ст.), получение которого сопряжено с усложнением конструкции реактора, необходимостью использования вакуумного насоса. Кроме того, проведение пиролиза полиакрилонитрила в вакууме способствует уменьшению углеродного остатка и уменьшению количества получаемого наноматериала.

Техническим результатом является получение нанокомпозита FeNi3/C, содержащего наночастицы FeNi3 с размером от 12 до 85 нм, при термообработке композита FeCl3·6H2O/NiCl2·6H2O/ПАН/Графит.

Технический результат достигается следующим образом.

Способ синтеза нанокомпозита FeNi3/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде осуществляют при температуре 50-70°С, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля от 1 до 3 мас. % от массы полиакрилонитрила и графита до полного растворения компонентов, выпаривание растворителя проводят при температурах 70-90°С, термообработка твердого остатка осуществляют в несколько этапов, предварительный нагрев на воздухе в течение 6-14 часов при температурах 150-200°С, и финальный нагрев осуществляют в атмосфере N2 при температуре от 500 до 900°С с интервалом подъема температуры 100°С и выдержкой 30-60 минут при соответствующих температурах с образованием наночастиц FeNi3 с размером частиц от 12 до 85 нм.

Для измерения размеров наночастиц FeNi3 использованы рентгеновский дифрактометр ДРОН-1,5 (CuKα-излучение) с модернизированной коллимацией и метод сканирующей электронной микроскопии (СЭМ) с использованием низковакуумного растрового двухлучевого электронного микроскопа Quanta 3D FEG. Средний размер кристаллитов (LC) интерметаллида FeNi3 рассчитан из рентгеновских спектров с помощью уравнения Дебая-Шерера:

LC=kλ/Bcosθ,

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ=1,54056 - длина волны рентгеновского CuKα-излучения, Θ - дифракционный угол, град.

Пример. Для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 % были использованы хлорид железа (III) шестиводный (FeCl3·6H2O), х.ч.; хлорид никеля (II) шестиводный (NiCl2·6H2O), х.ч.; полиакрилонитрил (ПАН); порошок графита (Гр); диметилформамид (ДМФА), х.ч. Были приготовлены следующие навески для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 %: m(ПАН)=50 г; m(Гр)=50 г; m(NiCl2·6H2O)=120,5 г; m(FeCl3·6H2O)=42,27 г. На первом этапе получили совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН, высыпав заготовленные навески, в ДМФА (V=800 мл). Для ускорения растворения необходимо перемешивать раствор при 60°С. Время приготовления раствора составило 4 час. Приготовленный порошок графита нагревали в муфеле при 350°С в течение 3 часов. Затем графитовый порошок добавили в совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН в ДМФА. Полученную смесь перемешивали в течение 30 мин при 60°С.

На втором этапе выпаривали растворитель ДМФА. Для этого раствор разлили в четыре фарфоровые чашки (V=250 мл). Чашки с раствором выдерживали при 80°С в течение 22 часов с использованием нагревательной плитки ES-H3040 (фирма Экрос) до образования вязкой массы.

Предварительная термическая обработка композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O на воздухе при 200°С осуществляли в муфеле в течение 14 часов. В результате получена твердая масса. Масса была размолота с использованием ступки и пестика.

Синтез нанокомпозита FeNi3/C из композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O происходил на стадии термической обработки в атмосфере N2 с использованием промышленной установки.

Для термической обработки были использованы три графитовые кюветы, которые одновременно помещались в реактор. Был применен ступенчатый нагрев. Температура нагрева и время выдержки (t) композита при этой температуре на каждой ступени указаны ниже: 1) 300°С; t=1 час. После термической обработки при 300°С три кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. Для дальнейшей термической обработки были использованы две графитовые кюветы в результате убыли веса массы композита из-за процессов карбонизации полимера и разложения солей, содержащихся в композите.

После загрузки двух кювет в установку был продолжен ступенчатый нагрев со следующими параметрами: 2) 400°С; t=1 час; 3) 500°С; t=30 мин; 4) 600°С; t=30 мин. После термической обработки при 600°С две кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. После загрузки двух кювет в реактор установки был продолжен ступенчатый нагрев со следующими параметрами: 5) 700°С; t=1 час; 6) 800°С; t=1 час; 7) 900°С; t=30 мин.

После термической обработки при 900°С две кюветы с композитом были извлечены из реактора установки. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика.

Полученный нанокомпозит FeNi3/C содержал наночастицы FeNi3 с размером в диапазоне от 12 до 85 нм, установленном с помощью методов рентгеновской дифрактометрии и сканирующей электронной микроскопии.

Способ синтеза нанокомпозита FeNi/C, включающий приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка, отличающийся тем, что приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов, выпаривание растворителя проводят при температуре 70÷90°С, термообработка твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6÷14 часов при температуре 150÷200°С, и финальный нагрев - в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°С и выдержкой 30÷60 минут при соответствующих температурах с образованием наночастиц FeNi с размером частиц от 12 до 85 нм.
Источник поступления информации: Роспатент

Показаны записи 191-200 из 347.
04.04.2018
№218.016.2f5b

Электролизер

Изобретение относится к электролизеру для электрохимического осаждения цинка электролизом водных растворов. Электролизер содержит корпус с расположенными внутри него монополярными электродами - анодами и катодами, и средство периодического реверса тока, выполненное в виде дополнительных...
Тип: Изобретение
Номер охранного документа: 0002644715
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2ff1

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению электродов из высоколегированных сплавов на основе алюминидов никеля. Способ включает получение полуфабриката методом центробежного СВС-литья с использованием реакционной смеси, содержащей оксид никеля, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002644702
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.304a

Способ отделения продукта углеродных нанотрубок от углерод-катализаторного композита

Изобретение относится к нанотехнологии и может быть использовано при изготовлении армирующих добавок для композиционных материалов и функциональных покрытий. Углерод-катализаторный композит измельчают до крупности -44 мкм и репульпируют в воде при соотношении Т : Ж = 1:3 при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002644893
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30b6

Способ извлечения металлов при газификации твердого топлива в политопливном газогенераторе

Изобретение относится к комплексной переработке углеродсодержащих материалов, таких как угли, торф, горючие сланцы, углеродсодержащих техногенных материалов, таких как отходы углеобогащения, отходы деревообработки, твердые коммунальные отходы, и может найти применение в энергетике, химической...
Тип: Изобретение
Номер охранного документа: 0002644892
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30ed

Литниковая система для заливки лопаток из жаропрочных сплавов для газотурбинного двигателя в формы, изготовленные автоматизированным способом

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены...
Тип: Изобретение
Номер охранного документа: 0002644868
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
Показаны записи 191-200 из 216.
04.04.2018
№218.016.2f5b

Электролизер

Изобретение относится к электролизеру для электрохимического осаждения цинка электролизом водных растворов. Электролизер содержит корпус с расположенными внутри него монополярными электродами - анодами и катодами, и средство периодического реверса тока, выполненное в виде дополнительных...
Тип: Изобретение
Номер охранного документа: 0002644715
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2ff1

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению электродов из высоколегированных сплавов на основе алюминидов никеля. Способ включает получение полуфабриката методом центробежного СВС-литья с использованием реакционной смеси, содержащей оксид никеля, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002644702
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.304a

Способ отделения продукта углеродных нанотрубок от углерод-катализаторного композита

Изобретение относится к нанотехнологии и может быть использовано при изготовлении армирующих добавок для композиционных материалов и функциональных покрытий. Углерод-катализаторный композит измельчают до крупности -44 мкм и репульпируют в воде при соотношении Т : Ж = 1:3 при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002644893
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30b6

Способ извлечения металлов при газификации твердого топлива в политопливном газогенераторе

Изобретение относится к комплексной переработке углеродсодержащих материалов, таких как угли, торф, горючие сланцы, углеродсодержащих техногенных материалов, таких как отходы углеобогащения, отходы деревообработки, твердые коммунальные отходы, и может найти применение в энергетике, химической...
Тип: Изобретение
Номер охранного документа: 0002644892
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30ed

Литниковая система для заливки лопаток из жаропрочных сплавов для газотурбинного двигателя в формы, изготовленные автоматизированным способом

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены...
Тип: Изобретение
Номер охранного документа: 0002644868
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3108

Катализатор и способ получения ацетальдегида с его использованием

Изобретение относится к области гетерогенного катализа, а именно к катализатору и способу получения ацетальдегида в ходе газофазного неокислительного дегидрирования этанола, и может быть использовано на предприятиях химической и фармацевтической промышленности для получения ацетальдегида....
Тип: Изобретение
Номер охранного документа: 0002644770
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3124

Автоматический нейросетевой настройщик параметров пи-регулятора для управления нагревательными объектами

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002644843
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.318e

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002645192
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3504

Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла

Изобретение относится к получению электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла. Способ включает механическую обработку смеси порошков меди и тугоплавного металла в атмосфере аргона при соотношении масс шаров и смеси...
Тип: Изобретение
Номер охранного документа: 0002645855
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.352f

Электросталеплавильный агрегат ковш-печь (эса-кп)

Изобретение относится к области металлургии, а конкретнее к области электрометаллургии стали и, в частности, к агрегатам ковш-печь (АКОС). Агрегат содержит футерованный ковш со сводом, установленные в его днище шиберные блоки с топливно-кислородными горелками (ТКГ) для нагрева и расплавления...
Тип: Изобретение
Номер охранного документа: 0002645858
Дата охранного документа: 28.02.2018
+ добавить свой РИД