×
13.01.2017
217.015.6ad8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА FeNi/C В ПРОМЫШЛЕННЫХ МАСШТАБАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов. Выпаривание растворителя проводят при температуре 70÷90°C. Термообработку твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6-14 часов при температуре 150÷200°C, и финальный нагрев в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°C и выдержкой 30÷60 минут при соответствующих температурах. 1 пр.

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi3/C.

Одним из способов получения наночастиц FeNi3 является восстановление в гидразине N2H4·H2O солей FeCl2·4H2O и NiCl2·6H2O, предварительно растворенных в деионизованной воде [Xuegang Lu, Gongying Liang, Yumei Zhang. Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution // Material Science and Engineering B. 2007. V. 139. PP. 124-127]. К недостаткам этого способа следует отнести отсутствие стабилизирующей среды для наночастиц FeNi3 и длительное время реакции, составляющее 24 часа, что затрудняет возможность контролировать размер частиц и однородность их распределения.

Для применения в области высоких частот наночастицы FeNi3 инкапсулируют SiO2, таким образом увеличивая сопротивление композита. Наночастицы FeNi3 приготавливают с помощью химического восстановления солей FeCl2·4H2O и NiCl2·6H2O в гидразин гидрате N2H4·H2O (С=80%). При этом в качестве поверхностно-активного вещества используют полиэтиленгликоль. Время реакции составляет 24 часа при комнатной температуре. В процессе реакции рН контролируется и поддерживается в интервале 12≤рН≤13 [X. Lu, G. Liang, Q. Sun, С. Yang. High-frequency magnetic properties of FeNi3-SiO2 nanocomposite synthesized by a facile chemical method. // Journal of Alloys and Compounds. 2011. V. 509. PP. 5079-5083]. К недостаткам этого способа синтеза наночастиц FeNi3 можно отнести сложность контролирования размера и фазовый состав наночастиц из-за флуктуаций условий реакции (температура, рН, концентрация реагентов) в процессе длительной реакции восстановления.

Другой способ получения нанокомпозита FeNi3/C заключается в инфракрасном нагреве смеси на основе FeCl3·6H2O, NiCl2·6H2O и полиакрилонитрила (ПАН) при давлении 10-3÷10-2 мм рт. ст. до 700°С в течение от 1 до 30 мин [Кожитов Л.В., Козлов В.В., Костикова А.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Патент на изобретение №2455225. Бюл. №19. 10.07.2012]. Недостатками этого способа являются следующие ограничения: обработка с помощью ИК-излучения требует автоматизированных устройств для синтеза наноматериала в промышленных масштабах, которые не производятся; обработка с помощью ИК-излучения происходит в вакууме (Р=10-3÷10-2 мм рт. ст.), получение которого сопряжено с усложнением конструкции реактора, необходимостью использования вакуумного насоса. Кроме того, проведение пиролиза полиакрилонитрила в вакууме способствует уменьшению углеродного остатка и уменьшению количества получаемого наноматериала.

Техническим результатом является получение нанокомпозита FeNi3/C, содержащего наночастицы FeNi3 с размером от 12 до 85 нм, при термообработке композита FeCl3·6H2O/NiCl2·6H2O/ПАН/Графит.

Технический результат достигается следующим образом.

Способ синтеза нанокомпозита FeNi3/C включает приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка. Приготовление раствора полиакрилонитрила, порошка графита, FeCl3·6H2O и NiCl2·6H2O в диметилформамиде осуществляют при температуре 50-70°С, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля от 1 до 3 мас. % от массы полиакрилонитрила и графита до полного растворения компонентов, выпаривание растворителя проводят при температурах 70-90°С, термообработка твердого остатка осуществляют в несколько этапов, предварительный нагрев на воздухе в течение 6-14 часов при температурах 150-200°С, и финальный нагрев осуществляют в атмосфере N2 при температуре от 500 до 900°С с интервалом подъема температуры 100°С и выдержкой 30-60 минут при соответствующих температурах с образованием наночастиц FeNi3 с размером частиц от 12 до 85 нм.

Для измерения размеров наночастиц FeNi3 использованы рентгеновский дифрактометр ДРОН-1,5 (CuKα-излучение) с модернизированной коллимацией и метод сканирующей электронной микроскопии (СЭМ) с использованием низковакуумного растрового двухлучевого электронного микроскопа Quanta 3D FEG. Средний размер кристаллитов (LC) интерметаллида FeNi3 рассчитан из рентгеновских спектров с помощью уравнения Дебая-Шерера:

LC=kλ/Bcosθ,

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ=1,54056 - длина волны рентгеновского CuKα-излучения, Θ - дифракционный угол, град.

Пример. Для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 % были использованы хлорид железа (III) шестиводный (FeCl3·6H2O), х.ч.; хлорид никеля (II) шестиводный (NiCl2·6H2O), х.ч.; полиакрилонитрил (ПАН); порошок графита (Гр); диметилформамид (ДМФА), х.ч. Были приготовлены следующие навески для синтеза нанокомпозита FeNi3/C с C(FeNi3)=40 %: m(ПАН)=50 г; m(Гр)=50 г; m(NiCl2·6H2O)=120,5 г; m(FeCl3·6H2O)=42,27 г. На первом этапе получили совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН, высыпав заготовленные навески, в ДМФА (V=800 мл). Для ускорения растворения необходимо перемешивать раствор при 60°С. Время приготовления раствора составило 4 час. Приготовленный порошок графита нагревали в муфеле при 350°С в течение 3 часов. Затем графитовый порошок добавили в совместный раствор FeCl3·6H2O, NiCl2·6H2O и ПАН в ДМФА. Полученную смесь перемешивали в течение 30 мин при 60°С.

На втором этапе выпаривали растворитель ДМФА. Для этого раствор разлили в четыре фарфоровые чашки (V=250 мл). Чашки с раствором выдерживали при 80°С в течение 22 часов с использованием нагревательной плитки ES-H3040 (фирма Экрос) до образования вязкой массы.

Предварительная термическая обработка композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O на воздухе при 200°С осуществляли в муфеле в течение 14 часов. В результате получена твердая масса. Масса была размолота с использованием ступки и пестика.

Синтез нанокомпозита FeNi3/C из композита на основе полиакрилонитрила, графита, NiCl2·6H2O и FeCl3·6H2O происходил на стадии термической обработки в атмосфере N2 с использованием промышленной установки.

Для термической обработки были использованы три графитовые кюветы, которые одновременно помещались в реактор. Был применен ступенчатый нагрев. Температура нагрева и время выдержки (t) композита при этой температуре на каждой ступени указаны ниже: 1) 300°С; t=1 час. После термической обработки при 300°С три кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. Для дальнейшей термической обработки были использованы две графитовые кюветы в результате убыли веса массы композита из-за процессов карбонизации полимера и разложения солей, содержащихся в композите.

После загрузки двух кювет в установку был продолжен ступенчатый нагрев со следующими параметрами: 2) 400°С; t=1 час; 3) 500°С; t=30 мин; 4) 600°С; t=30 мин. После термической обработки при 600°С две кюветы с композитом были извлечены из реактора. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика. После загрузки двух кювет в реактор установки был продолжен ступенчатый нагрев со следующими параметрами: 5) 700°С; t=1 час; 6) 800°С; t=1 час; 7) 900°С; t=30 мин.

После термической обработки при 900°С две кюветы с композитом были извлечены из реактора установки. Полученная серая масса дополнительно подверглась измельчению с использованием ступки и пестика.

Полученный нанокомпозит FeNi3/C содержал наночастицы FeNi3 с размером в диапазоне от 12 до 85 нм, установленном с помощью методов рентгеновской дифрактометрии и сканирующей электронной микроскопии.

Способ синтеза нанокомпозита FeNi/C, включающий приготовление совместного раствора порошка графита, полиакрилонитрила, FeCl·6HO и NiCl·6HO в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагревание полученного твердого остатка, отличающийся тем, что приготовление раствора полиакрилонитрила, порошка графита, FeCl·6HO и NiCl·6HO в диметилформамиде осуществляют при температуре 50÷70°C, при следующем соотношении компонентов: полиакрилонитрил от 2 до 5 мас. % от диметилформамида, порошок графита от 2 до 5 мас. % от диметилформамида, концентрация железа от 0,3 до 1 мас. %, никеля - от 1 до 3 мас. % от массы полиакрилонитрила и графита, до полного растворения компонентов, выпаривание растворителя проводят при температуре 70÷90°С, термообработка твердого остатка осуществляют в несколько этапов: предварительный нагрев на воздухе в течение 6÷14 часов при температуре 150÷200°С, и финальный нагрев - в атмосфере N при температуре от 500 до 900°C с интервалом подъема температуры 100°С и выдержкой 30÷60 минут при соответствующих температурах с образованием наночастиц FeNi с размером частиц от 12 до 85 нм.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 347.
25.08.2017
№217.015.c650

Способ получения мелкодисперсной шихты серебро-оксид меди

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении электроконтактов на основе серебра. Описан способ получения мелкодисперсной шихты серебро-оксид меди(II), включающий химическое осаждение карбонатов серебра и меди из раствора, содержащего нитраты...
Тип: Изобретение
Номер охранного документа: 0002618700
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74b

Способ контроля напряженного состояния массива горных пород в окрестности выработки

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со...
Тип: Изобретение
Номер охранного документа: 0002618778
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c85e

Способ приготовления катализатора для получения синтез газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез газа из метана с его использованием

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Способ приготовления катализатора для получения синтез-газа из метана включает носитель и нанесенные на его...
Тип: Изобретение
Номер охранного документа: 0002619104
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d045

Рабочее тело на основе магнитоактивных и пьезоактивных материалов для магнитных твердотельных тепловых насосов

Изобретение относится к области холодильной и криогенной техники. Рабочее тело с применением магнитокалорического эффекта в твердотельных тепловых насосах содержит хладагент, выполненный из материала с гигантским магнитокалорическим эффектом, и, по меньшей мере, один пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002621192
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d081

Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками для повышения электропроводности полимерматричных композитов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны...
Тип: Изобретение
Номер охранного документа: 0002621335
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d1ef

Способ получения отливок из высокопрочного сплава на основе алюминия

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и...
Тип: Изобретение
Номер охранного документа: 0002621499
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d22c

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3,...
Тип: Изобретение
Номер охранного документа: 0002621500
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
Показаны записи 111-120 из 216.
25.08.2017
№217.015.c650

Способ получения мелкодисперсной шихты серебро-оксид меди

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении электроконтактов на основе серебра. Описан способ получения мелкодисперсной шихты серебро-оксид меди(II), включающий химическое осаждение карбонатов серебра и меди из раствора, содержащего нитраты...
Тип: Изобретение
Номер охранного документа: 0002618700
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74b

Способ контроля напряженного состояния массива горных пород в окрестности выработки

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со...
Тип: Изобретение
Номер охранного документа: 0002618778
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c85e

Способ приготовления катализатора для получения синтез газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез газа из метана с его использованием

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Способ приготовления катализатора для получения синтез-газа из метана включает носитель и нанесенные на его...
Тип: Изобретение
Номер охранного документа: 0002619104
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d045

Рабочее тело на основе магнитоактивных и пьезоактивных материалов для магнитных твердотельных тепловых насосов

Изобретение относится к области холодильной и криогенной техники. Рабочее тело с применением магнитокалорического эффекта в твердотельных тепловых насосах содержит хладагент, выполненный из материала с гигантским магнитокалорическим эффектом, и, по меньшей мере, один пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002621192
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d081

Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками для повышения электропроводности полимерматричных композитов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны...
Тип: Изобретение
Номер охранного документа: 0002621335
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d1ef

Способ получения отливок из высокопрочного сплава на основе алюминия

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и...
Тип: Изобретение
Номер охранного документа: 0002621499
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d22c

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3,...
Тип: Изобретение
Номер охранного документа: 0002621500
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
+ добавить свой РИД