×
13.01.2017
217.015.6a8e

Результат интеллектуальной деятельности: ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ КОРПУСА ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002593184
Дата охранного документа
27.07.2016
Аннотация: Изобретение относится к области ракетно-космической техники. Предложенное теплозащитное покрытие (ТЗП) корпуса возвращаемого ЛА содержит намотанную на силовую оболочку по спирали ленту. Лента выполнена из армирующих волокон, пропитана связующим и своей поверхностью расположена под углом к поверхности корпуса. Лента расположена с переменным по толщине теплозащитного покрытия углом наклона к поверхности корпуса в диапазоне от 5 до 90 градусов. В зазорах, образованных между слоями ленты, размещена дополнительная лента; армирующие волокна в дополнительной ленте смещены относительно армирующих волокон ленты на угол от 5 до 80 градусов. Техническим результатом изобретения является снижение массы ЛА и качественное улучшение характеристик теплозащиты за счет повышения термоэрозионной стойкости в сочетании с улучшением ее теплоизоляционных свойств. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетно-космической техники и может быть использовано в конструкциях корпусов возвращаемых летательных аппаратов различного типа конической, биконической или составной цилиндроконической формы, совершающих вход в атмосферу с гиперзвуковыми скоростями, а также при изготовлении сопловых блоков ракетных двигателей.

Известно устройство теплозащитного покрытия корпуса боеголовки W-62 головной части Mk-12 ракеты «Минитмен-3», см., например, W. Garsia, J. Herts. Composite Material Application to the Mk-12A RV Midbay Substructure. General Dynamics Corp., Final Report AMMRC TR 79-51, 1979. В нем теплозащитное покрытие выполнено путем геликоидной намотки, т.е. намотки под углом к образующей ленты, изготовленной из пропитанного фенольным связующим кварцевого тканевого материала трехмерного плетения 3DQP (Three-Dimensional Quartz Phenolic). Существенным недостатком такого теплозащитного покрытия является его относительно низкая абляционная и эрозионная стойкость. Для летательных аппаратов с высокими скоростными характеристиками (скорость входа в атмосферу Vвх=7…8 км/с) или с малым баллистическим коэффициентом (σх=≤0,1·10-3 м2/кг) характерны достаточно большие значения толщин такого ТЗП и величины уноса, особенно в передней части корпуса.

Частично этот недостаток устранен за счет применения в теплозащитном покрытии углеродной ткани вместо кварцевой и тем самым повышена эрозионная стойкость покрытия. Теплозащитное покрытие на основе углепластика ленточного типа TWCP (Таре-Wrapped Carbon Phenolic matrix), применяемое на боеголовке Mk-78 ракеты «Минитмен-3, достаточно подробно описано в работе Дж. Криворука, Т. Брамлет. Влияние вызванных абляцией моментов крена на характеристики движения возвращаемых аппаратов - «Ракетная техника и космонавтика», т. 16, 1978, №3 и взято в качестве прототипа.

Покрытие изготавливалось намоткой ленточного фенольно-углеродного полуфабриката TWCP. Ткань раскраивалась по косой линии под углом 45°, куски лент сшивались, и получаемая лента наматывалась на коническую оправку под углом 20° к ее поверхности. После намотки и отверждения покрытие проходило этап механической обработки. Внешняя поверхность после обработки становилась гладкой, а образованные при намотке ленты канавки заполнены фенольной смолой. В процессе аэродинамического нагрева, т.е. при полете ЛА в атмосфере, фенольная смола уносится, и спиральная (спиралеобразная) поверхность покрытия оголяется, что приводит к возникновению аэродинамического момента крена.

Повышение эрозионной стойкости покрытия и снижение аэродинамического момента крена при абляции возможно за счет увеличения угла наклона поверхности ленты к поверхности корпуса или оправки. Однако это приводит к увеличению температуры на внутренней поверхности ТЗП, что связано с повышением теплопроводности ТЗП при больших углах укладки или наклона ленты.

Целью изобретения является разработка теплозащитного покрытия, лишенного присущих указанному устройству недостатков, имеющего более высокие термоэрозионные и теплоизоляционные свойства и придающего конструкции корпуса летательного аппарата более высокое весовое совершенство.

Указанная цель достигается тем, что поверхность ленты расположена с переменным по толщине теплозащитного покрытия углом наклона к поверхности корпуса в диапазоне от 5 до 90 градусов, а в зазорах, образованных между слоями ленты выше изгиба, размещена заподлицо с внешней поверхностью дополнительная лента.

Задача по повышению термоэрозионных и теплоизоляционных свойств покрытия решается также тем, что лента и дополнительная лента выполнены из армирующих волокон на основе одностенных нанотрубок, а связующее лент армировано многостенными углеродными нанотрубками, причем армирующие волокна в дополнительной ленте смещены относительно армирующих волокон ленты на угол от 5 до 80 градусов.

Сущность изобретения поясняется фиг. 1, 2, 3. На фиг. 1 изображена конструктивная схема теплозащитного покрытия корпуса летательного аппарата. Лента 1, пропитанная полимерным связующим, своей поверхностью расположена с переменным по толщине теплозащитного покрытия углом наклона α к образующей поверхности корпуса (или оправки) 2. Лента имеет изгиб 3. В образованном после (выше) изгиба зазоре между слоями ленты размещена дополнительная лента 4, угол наклона ее к ленте 1 ε. После отверждения и механической обработки наружная поверхность 5 является аэродинамической поверхностью. На фиг. 1, a представлена конструктивная схема ТЗП с дискретным увеличением наклона ленты по толщине. Соотношение между толщинами лент при дискретном (однократном) изменении наклона ленты определяется зависимостью:

На фиг. 1, б представлена конструктивная схема ТЗП с непрерывным увеличением угла наклона поверхности ленты.

На фиг. 2 представлены экспериментальные зависимости от угла наклона поверхности ленты для термоэрозионной стойкости в виде относительной скорости уноса Vα/Vα=5 (кривая 6) и относительной теплопроводности покрытия λαα=0 (кривая 7).

На фиг. 3 показано угловое смещение ΔΨ=(Ψ12) армирующих волокон в лентах 1 и 4.

Технический результат, получаемый при осуществлении изобретения, состоит в повышении весового совершенства летательного аппарата и качественного улучшения характеристик теплозащиты за счет повышения термоэрозионной стойкости в сочетании с улучшением ее теплоизоляционных свойств. Указанные показатели достигаются за счет того, что в полете в результате аэродинамического нагрева корпуса ЛА верхняя часть покрытия с дополнительной лентой обеспечивает повышенную термоэрозионную стойкость за счет увеличенного угла наклона поверхности ленты, а нижняя часть - повышенную теплоизоляцию корпуса за счет малых углов наклона поверхности ленты. Достижение технического результата иллюстрируется зависимостями на фиг. 2, из которых следует, что увеличение угла наклона ленты на наружной поверхности теплозащиты приводит к снижению уноса по сравнению с уносом при минимальном наклоне ленты в 2 и более раза (кривая 6). Уменьшение угла наклона ленты на внутренней поверхности почти в 4 раза снижает теплопроводность по сравнению с максимально возможным углом укладки (кривая 7). На внутренней поверхности теплозащиты угол наклона ленты минимальный 5°, что связано с ограничением ленточной спиральной намотки. На наружной поверхности суммарный угол наклона α+ε максимальный 90°. Дополнительным фактором улучшения теплоизоляционных свойств покрытия является угловое смещение ΔΨ армирующих волокон в дополнительной ленте 4 относительно ленты 1: угол армирования волокон Ψ2 ленты 4 больше угла армирования Ψ1 ленты 1 (см. фиг. 1). Минимальное значение углового смещения ΔΨ=0° соответствует совпадению направления армирующих волокон в лентах, предельное максимальное значение ΔΨ=90° - ортогональному расположению армирующих волокон.

Кроме того, предлагаемое устройство позволяет выполнить теплозащитное покрытие с различным сочетанием армирующих волокон и армирования связующего в ленте и дополнительной ленте. В настоящее время лента и дополнительная лента могут быть изготовлены из армирующих волокон на основе одностенных углеродных нанотрубок, а фенольное связующее для пропитки лент может быть армировано многостенными углеродными нанотрубками, что также повышает термоэрозионную стойкость теплозащиты. Согласно экспериментальным исследованиям, см. J.S. Tate, S. Gaikwad, N. Theodoropoulou, E. Trevino, and J.H. Koo. Carbon Phenolic Nanocomposites as Advanced Thermal Protection Material in Aerospace Applications. Texas State University-San Marcos, San Marcos, TX 78666-4616, USA. Journal of Composites, volume 2013 (2013), article ID 403656, 9 pages. May 2013, (http://dx.doi.org/10.1155/2013/403656), включение в фенольную смолу многостенных нанотрубок с массовой долей 2% приводит к снижению уноса массы с 26% до 23% и уменьшению линейной усадки материала в 2,13 раза по сравнению с контрольным образцом (без включения многостенных нанотрубок), для которого линейная усадка составляет 0,83 мм.

Для изготовления ТЗП могут быть использованы ленты на основе углеродных или стеклянных волокон, в том числе армированных одностенными нанотрубками. Укладка лент может производиться на существующих установках. По сравнению с промышленной разработкой теплозащитного покрытия на основе углепластика ленточного типа (TWCP), которая принята в качестве прототипа, использование предлагаемого устройства позволяет обеспечить, согласно оценкам, снижение массы теплозащиты корпуса до ~5% и более высокую на (~20%) термоэрозионную стойкость теплозащиты.


ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ КОРПУСА ЛЕТАТЕЛЬНОГО АППАРАТА
ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ КОРПУСА ЛЕТАТЕЛЬНОГО АППАРАТА
ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ КОРПУСА ЛЕТАТЕЛЬНОГО АППАРАТА
ТЕПЛОЗАЩИТНОЕ ПОКРЫТИЕ КОРПУСА ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 72.
20.02.2016
№216.014.e8d7

Способ управления космическим аппаратом при его выведении на орбиту искусственного спутника планеты

Изобретение относится к управлению движением космического аппарата (КА), главным образом на атмосферном участке траектории выведения. Способ включает автономное оперативное определение бортовыми средствами КА высоты условного перицентра траектории сразу после входа КА в атмосферу. Затем...
Тип: Изобретение
Номер охранного документа: 0002575556
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3246

Способ измерения угла поворота вала привода и устройство для его реализации

Изобретение относится к измерительной технике и может быть использовано в следящих приводах, в автоматических системах управления мобильными объектами и в робототехнике. Способ заключается в возбуждении первичной обмотки синусно-косинусного вращающегося трансформатора гармоническим напряжением...
Тип: Изобретение
Номер охранного документа: 0002580153
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3aee

Способ соединения космических объектов в космическом пространстве

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе. Вводят в систему...
Тип: Изобретение
Номер охранного документа: 0002583255
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c4b

Способ определения координат места пробоя корпуса гермоотсека космического объекта частицей природного или техногенного происхождения и устройство для его реализации

Группа изобретений относится к методам и средствам защиты космических объектов от высокоскоростных метеоритных или техногенных частиц. Способ осуществляют устройством в виде набора акустических датчиков (АКД), подключенных к измерительно-расчетному блоку, и высокочастотных антенн. Последние...
Тип: Изобретение
Номер охранного документа: 0002583251
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.472c

Универсальная рабочая камера эйфеля аэрогазодинамической установки

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор. В рабочей камере установлена перегородка, образующая...
Тип: Изобретение
Номер охранного документа: 0002585890
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5141

Способ управления движением космического аппарата на активном участке его выведения на орбиту искусственного спутника планеты

Изобретение относится к управлению движением космического аппарата (КА) реактивными и аэродинамическими средствами. На заключительном этапе реализации способа - после снижения аэродинамической силы до величины меньшего порядка, чем гравитационная - вектором тяги двигателя управляют из условий...
Тип: Изобретение
Номер охранного документа: 0002596004
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.53b5

Способ измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата в условиях, близких к невесомости и устройство для его осуществления

Группа изобретений относится к области измерений параметров движения твердых тел. Способ и устройство для реализации заявленного способа измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата (КА) в условиях, близких к невесомости, включает проведение...
Тип: Изобретение
Номер охранного документа: 0002593935
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5f91

Способ управления движением космического аппарата при посадке в заданную область поверхности планеты

Изобретение относится к управлению спуском космического аппарата (КА) в атмосфере. Способ включает изменение аэродинамического качества КА, обеспечивающее его посадку в заданную область поверхности планеты. Траектория спуска КА делится на два условных участка. На первом из них производят...
Тип: Изобретение
Номер охранного документа: 0002590775
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8030

Тензометрические весы

Изобретение относится к области аэромеханических измерений и может быть использовано в устройстве тензометрических весов, используемых для определения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов в потоке аэродинамической трубы. Заявленные...
Тип: Изобретение
Номер охранного документа: 0002599906
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8e0e

Способ повышения надёжности изделий

Изобретение относится к области машиностроения и авиационно-космической технике и может быть использовано при создании различного класса изделий. Технический результат - повышение надежности изделия и его составных частей. Способ повышения надежности изделия и его составных частей (СЧ),...
Тип: Изобретение
Номер охранного документа: 0002605046
Дата охранного документа: 20.12.2016
Показаны записи 41-50 из 54.
20.02.2016
№216.014.e8d7

Способ управления космическим аппаратом при его выведении на орбиту искусственного спутника планеты

Изобретение относится к управлению движением космического аппарата (КА), главным образом на атмосферном участке траектории выведения. Способ включает автономное оперативное определение бортовыми средствами КА высоты условного перицентра траектории сразу после входа КА в атмосферу. Затем...
Тип: Изобретение
Номер охранного документа: 0002575556
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3246

Способ измерения угла поворота вала привода и устройство для его реализации

Изобретение относится к измерительной технике и может быть использовано в следящих приводах, в автоматических системах управления мобильными объектами и в робототехнике. Способ заключается в возбуждении первичной обмотки синусно-косинусного вращающегося трансформатора гармоническим напряжением...
Тип: Изобретение
Номер охранного документа: 0002580153
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3aee

Способ соединения космических объектов в космическом пространстве

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе. Вводят в систему...
Тип: Изобретение
Номер охранного документа: 0002583255
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c4b

Способ определения координат места пробоя корпуса гермоотсека космического объекта частицей природного или техногенного происхождения и устройство для его реализации

Группа изобретений относится к методам и средствам защиты космических объектов от высокоскоростных метеоритных или техногенных частиц. Способ осуществляют устройством в виде набора акустических датчиков (АКД), подключенных к измерительно-расчетному блоку, и высокочастотных антенн. Последние...
Тип: Изобретение
Номер охранного документа: 0002583251
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.472c

Универсальная рабочая камера эйфеля аэрогазодинамической установки

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор. В рабочей камере установлена перегородка, образующая...
Тип: Изобретение
Номер охранного документа: 0002585890
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5141

Способ управления движением космического аппарата на активном участке его выведения на орбиту искусственного спутника планеты

Изобретение относится к управлению движением космического аппарата (КА) реактивными и аэродинамическими средствами. На заключительном этапе реализации способа - после снижения аэродинамической силы до величины меньшего порядка, чем гравитационная - вектором тяги двигателя управляют из условий...
Тип: Изобретение
Номер охранного документа: 0002596004
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.53b5

Способ измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата в условиях, близких к невесомости и устройство для его осуществления

Группа изобретений относится к области измерений параметров движения твердых тел. Способ и устройство для реализации заявленного способа измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата (КА) в условиях, близких к невесомости, включает проведение...
Тип: Изобретение
Номер охранного документа: 0002593935
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5f91

Способ управления движением космического аппарата при посадке в заданную область поверхности планеты

Изобретение относится к управлению спуском космического аппарата (КА) в атмосфере. Способ включает изменение аэродинамического качества КА, обеспечивающее его посадку в заданную область поверхности планеты. Траектория спуска КА делится на два условных участка. На первом из них производят...
Тип: Изобретение
Номер охранного документа: 0002590775
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8030

Тензометрические весы

Изобретение относится к области аэромеханических измерений и может быть использовано в устройстве тензометрических весов, используемых для определения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов в потоке аэродинамической трубы. Заявленные...
Тип: Изобретение
Номер охранного документа: 0002599906
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8e0e

Способ повышения надёжности изделий

Изобретение относится к области машиностроения и авиационно-космической технике и может быть использовано при создании различного класса изделий. Технический результат - повышение надежности изделия и его составных частей. Способ повышения надежности изделия и его составных частей (СЧ),...
Тип: Изобретение
Номер охранного документа: 0002605046
Дата охранного документа: 20.12.2016
+ добавить свой РИД