×
13.01.2017
217.015.6599

Результат интеллектуальной деятельности: СПОСОБ ГРУППОВОГО ОРБИТАЛЬНОГО ДВИЖЕНИЯ ИСКУССТВЕННЫХ СПУТНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению групповым полетом, в котором среднюю угловую скорость всех искусственных спутников Земли (ИСЗ) в группе поддерживают равной средней за виток угловой скорости пассивного ИСЗ. Последний располагают на центральной орбите группы. Активные ИСЗ поддерживают свое орбитальное положение относительно пассивного ИСЗ путем периодической реактивной коррекции. Техническим результатом изобретения является обеспечение заданной конфигурации строя ИСЗ, наблюдаемой с определённых мест поверхности Земли. 2 ил.

Изобретение относится к орбитальному движению искусственных спутников планеты, в частности Земли (ИСЗ), совершающих групповой полет.

Известны способы группового орбитального полета космических аппаратов (КА), например, последовательно выводимых на близкие орбиты (КА "Восток-3" и "Восток-4", КА "Восток-5" и "Восток-6", КА "Союз-6", "Союз-7" и "Союз-8"), см. "Мировая пилотируемая космонавтика. История. Техника. Люди." под ред. Ю.М. Батурина, М., изд-во "РТСофт", 2005 г., стр. 19-25, 91-93 (аналоги).

Координированное (групповое, эскадренное) движение космических аппаратов в орбитальном строю осуществляется путем придания всем либо некоторым КА строя способности к согласованному программному изменению параметров своей орбиты в рамках разрешенных пространственных допусков и располагаемых запасов характеристической скорости. Аппарат, способный к выполнению координированного пространственного маневра, будем называть управляемым или активным. В свою очередь, КА, не способный по каким-либо причинам к орбитальному маневру, будем называть неуправляемым или пассивным.

В качестве ближайшего аналога принят способ группового орбитального движения двух ИСЗ в рамках шведского космического эксперимента Prisma - активного (управляемого) КА Mango и пассивного (неуправляемого) КА Tango, см. Е. Землякова "Старт, "Днепра": советские технологии на благо европейских заказчиков"; "Prisma: нас уже двое!" / "Новости космонавтики" №8, 10, 2010 г. Космические аппараты были запущены ракетой-носителем "Днепр" 15 июня 2010 г. на общую орбиту и в процессе полета неоднократно расходились на расстояние до нескольких километров (при точности определения взаимного положения на уровне ~1 м).

К недостаткам способа - ближайшего аналога следует отнести отсутствие режима автономного управления активным КА с целью поддержания заданной (программной) конфигурации строя относительно наблюдателя на поверхности Земли, а также невозможность прямого (без существенных доработок) перенесения опыта совместного маневрирования КА Mango и Tango на группу из развернутых по фронту трех и более ИСЗ (для поддержания заданной конфигурации строя относительно наблюдателя на поверхности Земли).

Целью предлагаемого изобретения является создание способа группового орбитального движения двух и более ИСЗ (включающего их полет по близким орбитам с возможностью изменения положения активных аппаратов относительно пассивного), при реализации которого для разнесенного по фронту, глубине и высоте строя ИСЗ будет циклически поддерживаться заданная конфигурация орбитального построения относительно наблюдателя на поверхности Земли.

Указанная цель достигается тем, что среднюю за виток угловую скорость всех ИСЗ группы выдерживают одинаковой. При этом в качестве средней за виток угловой скорости принимают угловую скорость пассивного ИСЗ группы. В свою очередь, пассивный ИСЗ располагают на центральной орбите группы. При этом каждый активный ИСЗ занимает начальное в цикле орбитальное положение за время не более 1/16 своего периода обращения. Среднюю за виток угловую скорость каждый активный ИСЗ выдерживает циклическим расхождением по направлению полета и высоте относительно положения пассивного ИСЗ и других активных ИСЗ группы. При этом каждый активный ИСЗ занимает и поддерживает свое орбитальное положение в группе путем выдачи реактивных импульсов бортовой двигательной установкой. Контроль взаимного положения ИСЗ в группе осуществляют не реже 8 раз за виток путем обмена данными о координатах и времени определения координат всех ИСЗ группы, полученными от бортовой аппаратуры пользователя спутниковой навигационной системы.

Схема реализации группового орбитального движения ИСЗ по предлагаемому техническому решению для трех аппаратов - одного пассивного и двух активных (КА-1 и КА-2) - приведена на фиг.1 и 2. Приняты обозначения:

1 - траектория пассивного ИСЗ;

2 - траектория активного КА-1;

3 - траектория активного КА-2;

4 - зона максимально близкого схождения КА группы для наземного наблюдателя;

5 - двойная зона последовательного "правого" и "левого" расположения активных ИСЗ, когда совместно с пассивным ИСЗ конфигурация группового орбитального изображения для наземного наблюдателя находится в области допустимых (в плане) искажений.

Пусть в начальный момент цикла (витка) высота полета пассивного аппарата (НП) и активных КА-1 (HКА-1) и КА-2 (HКА-2) одинакова (HП=HКА-1КА-2). Расстояние S между аппаратами по нормали к направлению полета (НП) в плоскости местной горизонтали (МГ) мало в сравнении с высотой (S<<НП, НКА-1, НКА-2), при этом угол расхождения двух активных КА вдоль S относительно центра Земли составляет α. Орбитальные скорости всех аппаратов (соответственно, VП, V1 и V2) в начальный момент движения также равны (VП=V1=V2). При этом программные параметры орбит всех ИСЗ группы строго различаются на малую, но конкретную величину (эксцентриситета, некомпланарности, ориентации линии апсид и т.д.), что позволяет, при отсутствии возмущений, осуществлять долговременное безударное циклическое относительное движение в ограниченной области пространства вблизи друг друга.

К основным возмущениям, вызывающим "естественные" уходы ИСЗ строя, можно отнести:

- несовпадение плоскостей и конфигурации орбит аппаратов орбитального строя вследствие их программного разведения по фронту и различий эксцентриситетов;

- различие аэродинамических сил вдоль направления полета вследствие особенностей ориентации и конструктивного исполнения каждого конкретного ИСЗ строя;

- баллистические ошибки выведения (начального положения в строю) каждого ИСЗ;

- возмущения от действия несферичности гравитационного поля Земли, магнитного поля Земли, солнечного светового давления, притяжения Луны и Солнца, взаимодействия электрического заряда поверхности ИСЗ с плазмой, ударов микрометеоров;

- возмущения от внутренних факторов (например, погрешностей ориентации сопел реактивных двигателей при маневрах) и т.д.

В соответствии с предлагаемым техническим решением групповое координированное орбитальное движение осуществляется:

- в плоскости орбиты каждого активного ИСЗ - путем согласованного с угловой скоростью (и соответственно, периодом обращения) пассивного ИСЗ циклического изменения высоты (и соответственно, текущей угловой скорости) полета активного аппарата посредством выбора соответствующей конфигурации орбиты;

- в плоскости местной горизонтали - путем программного расхождения плоскостей орбит пассивного и каждого активного ИСЗ строя (см. фиг.1, 2).

Парирование возмущений, вызывающих дрейф КА относительно программных траекторных значений его координат, обеспечивается путем коррекции направления дрейфа активного ИСЗ при его выходе за пределы заданной зоны эскадренной позиции.

Поскольку плоскости орбит поз.1, поз.2 и поз.3 ИСЗ группы не совпадают, на каждом витке вокруг Земли будут иметь место два "пересечения" (α=0) плоскостей их траекторий (зона поз.4). При этом для рационального (с точки зрения запасов бортовой энергетики, а также допустимых искажений наблюдаемого с Земли изображения) расхождения развернутых по фронту космических аппаратов достаточным условием будет выполнение циклического маневра вдоль местной вертикали активными КА, что достигается соответствующим выбором параметров их траекторий поз.2, 3 (например, незначительным отличием эксцентриситетов) относительно орбиты поз.1 пассивного аппарата (см., например, В.И. Левантовский "Механика космического полета в элементарном изложении", М.: "Наука", 1974, стр.114-120). При этом должно выполняться обязательное условие цельности строя для наземного наблюдателя:

где - средние угловые скорости на витке, соответственно, пассивного аппарата группы и активных КА-1 и КА-2 (отметим, что условие равенства угловых скоростей ИСЗ автоматически обеспечивает равенство периодов обращения; при этом обратное утверждение о равенстве периодов обращения может быть справедливым для существенно разных по геометрии орбит, и в таком случае не обеспечивает группового движения ИСЗ).

С целью обеспечения надежности формирования и поддержания заданного орбитального построения ИСЗ в качестве средней за виток угловой скорости группы целесообразно принять . При этом пассивный аппарат располагают на центральной (относительно зон поз.5) орбите поз.1 в группе. Орбиты всех активных КА (например, поз.2 и поз.3) обеспечивают при этом циклическое изменение относительного орбитального положения каждого такого КА по отношению к положению пассивного аппарата (см. фиг.1, 2).

Следует отметить, что, с целью формирования заданного орбитального изображения в пределах допустимых для наземного наблюдателя искажений, каждый активный ИСЗ группы должен занять начальное в цикле орбитальное положение за время не более 1/16 своего периода обращения. В противном случае визуально воспринимаемая наблюдателем с Земли деформация орбитального изображения оказывается чрезмерной. При этом каждый активный аппарат занимает и поддерживает свое орбитальное положение в группе путем выдачи реактивных импульсов бортовой двигательной установкой.

Проекция траекторий поз.1, поз.2 и поз.3 ИСЗ группы на "распрямленную" (в плоскости чертежа) МГ представлена на фиг.1. Здесь Sпр - заданное программное значение S; ΔS - разрешенное отклонение (допуск) на максимальное расхождение (сближение) КА-1 и КА-2 в плоскости МГ, при котором изображение строя с Земли наблюдается без заметных искажений (таким образом, в "двойной серой" зоне поз.5 расположения КА-1 и КА-2 орбитальное изображение всего эскадренного строя при наблюдении с Земли соответствует расчетному, между "двойными серыми" зонами поз.5 орбитальное изображение сливается в "цепочку" ИСЗ; такое "пульсирование" орбитального изображения развернутой по фронту группы космических аппаратов тем заметнее визуально, чем больше значение α).

Проекция траекторий КА-1 и КА-2 (поз.2 и поз.3) на плоскость орбиты поз.1 пассивного ИСЗ показана на фиг.2. При этом разность высот КА-1 и КА-2 в точке визуального "пересечения" их траекторий (поз.4) может составлять от сотен метров до единиц километров. Смещение КА-1 относительно КА-2 в проекции на плоскость МГ, обусловленное периодическим изменением V1 от высоты "подныривания" (V1>V2 при HКА-1КА-2) до высоты "перепрыгивания" (V1<V2 при HКА-1КА-2) и наоборот, не будет превышать десятков метров (что является приемлемым с точки зрения допустимых в плане искажений орбитального изображения).

Выполнение условия предполагает (для устойчивого поддержания заданной конфигурации орбитального строя активными КА относительно пассивного аппарата):

- контроль текущей высоты НП, НКА-1, НКА-2;

- контроль текущей скорости VП, V1, V2;

- контроль отклонений вдоль НП и по нормали к НП каждым активным КА относительно их программного значения на данном участке витка.

Техническая реализация указанного контроля может производиться, например, с применением периодического приема-передачи навигационной информации не реже 8 раз за виток (цикл), что осуществляется путем взаимного обмена данными о координатах, а также времени определения координат всех ИСЗ группы; эту навигационную информацию каждый ИСЗ получает посредством собственной бортовой аппаратуры пользователя спутниковой навигационной системы (например, ГЛОНАСС, GPS, в перспективе - Galileo). Такой вариант контроля пространственного положения каждого ИСЗ строя представляется наиболее рациональным по критерию "стоимость - эффективность - время разработки и ввода в эксплуатацию".

При увеличении количества активных ИСЗ в группе для каждого из них определяется заданное программное положение в "двойных серых" зонах поз.5 и порядок их согласованного маневрирования, необходимый для этого запас характеристической скорости и, соответственно, бортовой запас топлива, границы (допуски ΔS) на максимально допустимое для данной высоты расхождение (сближение) аппаратов.

Применение предложенного технического решения целесообразно для эскадренных ИСЗ космической рекламы, групповых КА-мишеней для калибровки и юстировки оптических (в том числе лазерных) и радиотехнических наземных комплексов контроля космического пространства, групп КА-инспекторов некооперированных орбитальных объектов, при осуществлении координированных многопозиционных измерений параметров космического пространства и верхней атмосферы в интересах научного знания.

Способ группового орбитального движения активных и пассивного искусственных спутников Земли (ИСЗ), включающий их полет по близким орбитам с возможностью изменения положения активных ИСЗ относительно пассивного ИСЗ, отличающийся тем, что среднюю угловую скорость всех ИСЗ группы выдерживают одинаковой, при этом в качестве средней за виток угловой скорости принимают угловую скорость пассивного ИСЗ, который располагают на центральной орбите группы.
СПОСОБ ГРУППОВОГО ОРБИТАЛЬНОГО ДВИЖЕНИЯ ИСКУССТВЕННЫХ СПУТНИКОВ
СПОСОБ ГРУППОВОГО ОРБИТАЛЬНОГО ДВИЖЕНИЯ ИСКУССТВЕННЫХ СПУТНИКОВ
Источник поступления информации: Роспатент

Показаны записи 61-62 из 62.
17.02.2018
№218.016.2cdb

Ракетно-космический комплекс и способ функционирования ракетно-космического комплекса

Группа изобретений относится к средствам и методам выведения, работы на орбите и увода с орбиты автоматических полезных нагрузок (ПН) с помощью беспилотного ракетно-космического комплекса (РКК). В состав РКК входит разгонный блок (РБ) с устройствами управления ракетой-носителем, которые при...
Тип: Изобретение
Номер охранного документа: 0002643744
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.3055

Способ поражения цели сверхзвуковой крылатой ракетой и сверхзвуковая крылатая ракета для его осуществления

Группа изобретений относится к ракетной технике, а именно к сверхзвуковым крылатым ракетам, предназначенным для поражения наземных целей, включая легкоуязвимые площадные наземные объекты, в том числе критичные по времени мобильные цели. Способ включает введение в бортовую аппаратуру системы...
Тип: Изобретение
Номер охранного документа: 0002644962
Дата охранного документа: 15.02.2018
Показаны записи 71-80 из 100.
28.09.2018
№218.016.8c32

Головка эндопротеза тазобедренного сустава

Изобретение относится к медицине, ортопедии. Головка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%....
Тип: Изобретение
Номер охранного документа: 0002668132
Дата охранного документа: 26.09.2018
28.09.2018
№218.016.8c6d

Ножка эндопротеза тазобедренного сустава

Изобретение относится к медицине, а именно ортопедии. Ножка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58……3,62 ангстрема при общем количестве волокна 20……80% и...
Тип: Изобретение
Номер охранного документа: 0002668131
Дата охранного документа: 26.09.2018
28.09.2018
№218.016.8c7b

Чашка эндопротеза тазобедренного сустава

Изобретение относится к медицине, ортопедии. Чашка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%....
Тип: Изобретение
Номер охранного документа: 0002668130
Дата охранного документа: 26.09.2018
13.10.2018
№218.016.9175

Имплантат для замещения костных дефектов

Изобретение относится к медицине, хирургии и ортопедии. Имплантат для замещения костных дефектов выполнен из углерод-углеродного композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве...
Тип: Изобретение
Номер охранного документа: 0002669352
Дата охранного документа: 10.10.2018
01.11.2018
№218.016.97da

Способ управления полетом баллистического летательного аппарата

Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность». Технической задачей предлагаемого изобретения является такое управление полетом баллистического летательного аппарата (ЛА), при котором обеспечивается сохранение расчетных...
Тип: Изобретение
Номер охранного документа: 0002671015
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.98ad

Устройство аэродинамического торможения космического аппарата

Изобретение относится к средствам увода с орбиты выработавших свой ресурс или отказавших автоматических космических аппаратов (КА). Устройство содержит контейнер (1) с надувной конструкцией в виде эластичной оболочки (2), механизм ее крепления к контейнеру, выталкивания и раскрытия. Данный...
Тип: Изобретение
Номер охранного документа: 0002671067
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.98b7

Береговой ракетный комплекс

Изобретение относится к мобильным системам вооружения. Береговой ракетный комплекс (БРК) включает самоходный командный пункт (СКП), содержащий машину боевого управления (МБУ) и самоходные пусковые установки (СПУ) с ракетами. МБУ и СПУ выполнены с возможностью соединения системами связи и обмена...
Тип: Изобретение
Номер охранного документа: 0002671222
Дата охранного документа: 30.10.2018
23.11.2018
№218.016.a016

Преобразователь солнечной энергии

Изобретение относится к возобновляемой энергетике, в частности, может быть применено в солнечной энергетике для придания дополнительных функций устройствам, преобразующим солнечное излучение в тепловую или электрическую энергию. Преобразователь солнечной энергии включает корпус, приемник...
Тип: Изобретение
Номер охранного документа: 0002673035
Дата охранного документа: 21.11.2018
13.12.2018
№218.016.a684

Авиационный комплекс обнаружения и тушения очагов возгорания и способ его применения

Изобретение относится к авиационной технике для тушения очагов возгорания. Авиационный комплекс включает беспилотный летательный аппарат (БПЛА) со складываемыми-раскладываемыми несущими поверхностями, оснащенный аппаратурой обнаружения и идентификации очагов возгорания, бортовой емкостью,...
Тип: Изобретение
Номер охранного документа: 0002674640
Дата охранного документа: 11.12.2018
29.03.2019
№219.016.f686

Способ обеспечения мягкой посадки летательного аппарата

Изобретение относится к летательным аппаратам (ЛА) и посадочным платформам, завершающим полет приземлением на поверхность планеты с использованием парашютов. Способ обеспечения мягкой посадки летательного аппарата включает парашютный спуск до заданного расстояния от поверхности планеты,...
Тип: Изобретение
Номер охранного документа: 0002400410
Дата охранного документа: 27.09.2010
+ добавить свой РИД