×
12.01.2017
217.015.63ac

Результат интеллектуальной деятельности: АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной и вычислительной техники и может быть использовано для преобразования аналоговых электрических сигналов в цифровой код. Техническим результатом является повышение точности преобразования. Устройство содержит блок слежения-хранения, генераторы, управляемые напряжением, аналого-цифровые преобразователи, спецпроцессоры быстрого преобразования Фурье, блоки максимальной амплитуды, блоки вычитания. 7 ил.

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в модулярной системе счисления.

Известно устройство (аналог) (авт.св. СССР №1368989, МКИ Н03М 1/28, БИ №3, 1988 г.), содержащее блок определения остатка по наибольшему основанию СОК, аналогово-цифровые преобразователи, сумматоры, шифраторы, блоки коррекции, коммутаторы, одновибратор, регистр, аналоговую входную шину, шину коррекции, шину управления, выходную шину «ядро числа» и выходные шины остатков по соответствующим основаниям СОК. Недостаток - малая точность преобразователя.

Известно устройство (аналог) (авт.св. СССР №1181141, МКИ Н03М 1/28, БИ №35, 1985 г.), содержащее блок определения остатка по наибольшему основанию СОК, аналогово-цифровые преобразователи, блоки коррекции, входную шину, шину коррекции, выходные шины кодов по основаниям СОК, сумматоры, шифраторы, шины кодов оснований СОК. Недостаток - малая точность преобразователя.

Наиболее близким к заявляемому является изобретение (пат. 2433527 Российская Федерация, МПК7 Н03М 1/28, заявл. 12.04.2010; опубл. 10.11.2011), содержащее блоки слежения-хранения, аналогово-цифровые преобразователи, цифроаналоговые преобразователи, блоки вычитания, выходные шины кодов остатков в СОК, вход.

Недостаток прототипа - малая точность преобразователя, обусловленная ростом ошибки от каскада к каскаду в результате уменьшения в геометрической прогрессии единичного интервала квантования по отношению к интервалу неопределенности, формируемого шумом.

Задача, на решение которой направлено заявляемое устройство, состоит в повышении точности представления формы аналогового сигнала в цифровом виде.

Технический результат выражается в реализации иного подхода к аналого-цифровому преобразованию, позволяющему устранить операцию, наиболее негативно влияющую на точность.

Технический результат достигается тем, что в алиасный аналого-цифровой преобразователь, содержащий вход, блок слежения-хранения, n основных аналого-цифровых преобразователей, n выходных шин кодов остатков в системе остаточных классов, где n - число оснований системы остаточных классов, введены основной генератор, управляемый напряжением, n дополнительных генераторов, управляемых напряжением, n дополнительных аналого-цифровых преобразователей, n основных и n дополнительных спецпроцессоров быстрого преобразования Фурье, n основных и n дополнительных блоков максимальной амплитуды, n блоков вычитания и n шин кодов оснований системы остаточных классов, при этом вход устройства объединен с входом блока слежения-хранения, выход которого соединен с входом основного и дополнительных генераторов, управляемых напряжением, при этом выход основного генератора, управляемого напряжением, соединен с входом основных аналого-цифровых преобразователей, а выход i-го дополнительного генератора, управляемого напряжением, соединен с входом i-го дополнительного аналого-цифрового преобразователя, при этом выход i-го основного аналого-цифрового преобразователя соединен с входом i-го основного спецпроцессора быстрого преобразования Фурье, а выход i-го дополнительного аналого-цифрового преобразователя соединен с входом i-го дополнительного спецпроцессора быстрого преобразования Фурье, при этом выход i-го основного спецпроцессора быстрого преобразования Фурье соединен с входом i-го основного блока максимальной амплитуды, а выход i-го дополнительного спецпроцессора быстрого преобразования Фурье соединен с входом i-го дополнительного блока максимальной амплитуды, выход которого соединен с третьим входом i-го блока вычитания, первый вход которого объединен с i-й шиной кодов оснований системы остаточных классов, при этом выход i-го основного блока максимальной амплитуды соединен со вторым входом i-го блока вычитания, выход которого объединен с i-й выходной шиной кодов остатков в системе остаточных классов.

На фиг. 1 представлена структурная схема алиасного АЦП в код СОК.

На фиг. 2 приведена зависимость алиасной частоты в основной ветви от частоты гармоники основного ГУН.

На фиг. 3 приведена зависимость алиасной частоты в дополнительной ветви относительно частоты гармоники основного ГУН.

На фиг. 4 представлена таблица 1 с выборками АЦП в соответствии с номерами.

На фиг. 5 представлены спектры после БПФ в основной ветви и интерполяция к непозиционному представлению по основаниям 3, 5 и 7.

На фиг. 6 представлены спектры после БПФ в дополнительной ветви и формирование на их основе признака четности.

На фиг. 7 представлена таблица 2 опорных напряжений параллельного АЦП и взвешивание на их основе соответствующего входного сигнала.

Сущность изобретения заключается в синтезе гармонического сигнала и естественной трансляции его спектра в первую зону Найквиста при дискретизации на элементарных аналого-цифровых преобразователях (АЦП) с частотами выборок, зависящими от значений оснований применяемой системы остаточных классов (СОК).

Построение прототипа по каскадному принципу приводит к тому, что синтез сигнала шума в первом каскаде, с уменьшением (без учета масштабирования) в разы единичного интервала квантования в следующем каскаде, во столько же раз увеличивает интервал неопределенности, на котором может быть зафиксировано ошибочное значение. Например, если взять основания СОК равными p1=3, р2=5, р3=7, то в одном тракте прототипа диапазон рабочих напряжений может быть разбит на три - в первом каскаде, потом один квант первого каскада - уже на пять - во втором, и один квант из второго каскада - на семь - в третьем каскаде. Таким образом, сгенерированный в первом каскаде уровень шума остается постоянным (для простоты - без учета шума следующих каскадов), а единичный интервал квантования уменьшается в разы. Применение масштабирования приводит к обратной картине - интервал единичного квантования почти не меняется, а ошибка первого каскада растет в геометрической прогрессии. Устранить негативное влияние каскадного построения возможно через иной подход к аналого-цифровому преобразованию.

Если частота отсчетов АЦП меньше удвоенной максимальной частоты сигнала, то возникает эффект биения и наложение спектров (алиасинг, - от английского «aliasing»). Спектр алиасных биений всегда располагается в полосе частот от 0 до fi 12, где fi - частота дискретизации элементарного АЦП. Данный процесс является прямым следствием теоремы Котельникова или (в иностранной литературе) критерия Найквиста (Аналого-цифровое преобразование: [пер. с англ.] / Под ред. Уолта Кестера. - М.: Техносфера. - 2007. - 1016 с.). Полосы частот от (N-1)·fi/2 до N·fi/2 образуют зоны Найквиста, где N - номер зоны. Зависимость алиасной частоты (fa) от линейно изменяющейся частоты входного гармонического сигнала можно представить следующим образом (фиг. 3). Для квантования уровня входного сигнала его сначала необходимо преобразовать в гармонический с частотой

где F - диапазон рабочих гармонических частот, который синтезируется генератором, управляемым напряжением (ГУН), fн - начальная частота ГУН, Е - диапазон рабочих напряжений АЦП, Ubx - преобразуемый уровень входного сигнала. Далее синтезированная гармоника сворачивается по частоте, согласно фиг.3, на i элементарных АЦП, работающих с частотой выборки

где - количество уровней квантования алиасного АЦП, pi - основания применяемой СОК, a n - количество оснований СОК. На этом работа с аналоговым сигналом прекращается и начинается анализ данных в цифровом виде, заключающийся в формировании амплитудно-частотной характеристики, определении частоты с максимальной амплитудой и четности исходной полосы Найквиста, что позволяет реализовать код в СОК. Таким образом устраняется межкаскадная геометрическая прогрессия ошибки и, соответственно, повышается точность преобразования.

Дополнительным эффектом является упрощение конструирования алиасного устройства по сравнению с прототипом, т.к. отпадает необходимость применения специализированных по основаниям СОК элементарных АЦП, место которых могут занимать обычные позиционные. Другим дополнительным эффектом является возможность выбора полосы частот ГУН в зависимости от прикладной области алиасного АЦП, позволяющая отстроиться от электромагнитного излучения внешнего источника, наиболее влияющего в качестве шума.

Показанный на фиг. 1 алиасный АЦП содержит вход 1, блок слежения-хранения 2, основной 3 и дополнительные 4.1-4.n генераторы, управляемые напряжением (ГУН), основные 5.1-5.n и дополнительные 6.1-6.n аналого-цифровые преобразователи (АЦП), основные 7.1-7.n и дополнительные 8.1-8.n спецпроцессоры быстрого преобразования Фурье (БПФ), основные 9.1-9.n и дополнительные 10.1-10.n блоки максимальной амплитуды, шины кодов оснований системы остаточных классов 11.1-11.n, блоки вычитания 12.1-12.n, выходные шины кодов остатков в СОК 13.1-13.n.

Вход устройства 1 объединен с входом блока слежения-хранения 2, выход которого соединен с входом основного 3 и дополнительных 4.1-4.n ГУН, при этом выход основного ГУН 3 соединен с входом основных АЦП 5.1-5.n, а выход i-го дополнительного ГУН 4.1-4.n соединен с входом i-го дополнительного АЦП 6.1-6.n, при этом выход i-го основного АЦП 5.1-5.n соединен с входом i-го основного спецпроцессора БПФ 7.1-7.n, а выход i-го дополнительного АЦП 6.1-6.n соединен с входом i-го дополнительного спецпроцессора БПФ 8.1-8.n, при этом выход i-го основного спецпроцессора БПФ 7.1-7.n соединен с входом i-го основного блока максимальной амплитуды 9.1-9.n, а выход i-го дополнительного спецпроцессора БПФ 8.1-8.n соединен с входом i-го дополнительного блока максимальной амплитуды 10.1-10.n, выход которого соединен с третьим входом i-го блока вычитания 12.1-12.n, первый вход которого объединен с i-й шиной кодов оснований системы остаточных классов 11.1-11.n, при этом выход i-го основного блока максимальной амплитуды 9.1-9.n соединен со вторым входом i-го блока вычитания 12.1-12.n, выход которого объединен с i-й выходной шиной кодов остатков в системе остаточных классов 13.1-13.n.

Работа алиасного АЦП (фиг. 1) начинается с запоминания уровня аналогового сигнала, поступающего на вход 1, в блоке слежения-хранения 2. Далее вычисление остатка по основанию pi осуществляется в i-м основном и дополнительном тракте по аналогичной схеме. Вначале входной уровень преобразуется ГУН в частоту гармонического сигнала по формуле

где F - диапазон рабочих гармонических частот, который синтезируется генератором управляемым напряжением (ГУН), fн - начальная частота ГУН, Е - диапазон рабочих напряжений АЦП, Uвx - преобразуемый уровень входного сигнала. Здесь fн=fmin для основного ГУН 3 и fн=fmin+fi/4 для дополнительных ГУН 4.1-4.n, где для простоты минимальная частота fmin=0. Частота гармоники дополнительных ГУН 4.1-4.n зависит через f0 от частоты выборки дополнительных АЦП 6.1-6.n. Но частота выборки i-го основного 5.i и дополнительного 6.i АЦП одинакова:

где - количество уровней квантования алиасного АЦП, pi - основания применяемой СОК, a n - количество оснований СОК. Далее гармоника сворачивается на основных 5.1-5.n (фиг. 2) и дополнительных 6.1-6.n (фиг. 3) АЦП, при этом алиасную частоту можно определить из выражения

Здесь (и далее) математическая операция в квадратных скобках подразумевает как результат целую часть числа.

Т.к. для БПФ необходимо 2K (K - целое положительное) выборок, при том, что основания СОК pi - взаимно простые, то должно выполняться условие:

Зная алиасные частоты и частоты дискретизации, можно определить значения всех 2K выборок каждого i-го основного (5.1-5.n) и дополнительного (6.1-6.n) АЦП:

где А - амплитуда гармоник от ГУН (3 и 4.1-4.n), Ei - диапазоны измеряемых АЦП (5.1-5.n и 6.1-6.n) напряжений, номер выборки - разрядность АЦП 5.1-5.n и 6.1-6.n. Полученные на АЦП (5.1-5.n и 6.1-6.n) выборки передаются спецпроцессорам БПФ 7.1-7.n и 8.1-8.n, на выходе которых формируется по 2K-1+1 значений, соответствующих линиям амплитудно-частотной характеристики (АЧХ) в первой зоне Найквиста. В блоках максимальной амплитуды 9.1-9.n и 10.1-10.n на основе полученных значений АЧХ производится интерполяция максимума спектра к непозиционному виду: в основных (9.1-9.n) по основанию pi, а в дополнительных (10.1-10.n) по основанию 2. Как результат основной (9.1-9.n) блок выдает число в диапазоне от 0 до pi-1, а дополнительный (10.1-10.n) - «1», если максимум спектра расположен в левой половине первой зоны Найквиста, и «0» - в правой половине, i-я основная и i-я дополнительная ветки сходятся на блоке вычитания 12.i, где в зависимости от признака четности номера зоны Найквиста производится («1» от блока 10.i) или не производится («0» от блока 10.i) операция вычитания полученного в основной ветке числа из pi-1. Значение pi подается по шинам кодов оснований системы остаточных классов 11.1-11.n. Таким образом, на выходной шине 13.1-13.n формируется окончательный код в СОК.

Пример.

Рассмотрим алиасный АЦП по основаниям СОК pi=3, р2=5, р3=7 (т.е. n=3, , . Такой алиасный АЦП содержит вход, блок слежения хранения 2, основной 3 и три дополнительных ГУН 4.1-4.3, по три АЦП, спецпроцессора БПФ и блока максимальной амплитуды в основной (соответственно 5.1-5.3, 7.1-7.3, 9.1-9.3) и дополнительной (соответственно 6.1-6.3, 8.1-8.3, 10.1-10.3) ветке. Плюс к этому алиасный АЦП содержит по три шины кодов оснований СОК 11.1-11.3, блока вычитания 12.1-12.3 и выходных шин кодов остатков 13.1-13.3.

Пусть на вход устройства 1 поступил уровень сигнала Uвх.=3,2 В, который запоминается в блоке слежения-хранения 2. Поскольку частоты гармоник с дополнительных ГУН 4.1-4.3 привязаны к частотам выборки АЦП 6.1-6.3, то рассчитаем сначала частоты выборок по известной формуле. Пусть диапазон рабочих гармонических частот F=1000 кГц, тогда частоты выборок основных 5.1-5.3 и дополнительных 6.1-6.3 АЦП есть:

Теперь можно вернуться к гармоникам ГУН. Пусть диапазон преобразуемых алиасным АЦП напряжений - от 0 до 5 В, т.е. Е=5 В, тогда частоты гармоник ГУН при входном уровне сигнала Uвх.=3,2 В будут равны (по № ГУН):

Рассчитаем алиасные частоты во всех трактах (по № АЦП):

Поскольку для БПФ необходимо 2K (K - целое положительное) выборок, то для выполнения условия достаточно, чтобы K=4, т.к. максимальное основание pn=7. Определим 2K выборок по известной формуле для каждого АЦП 5.1-5.3 и 6.1-6.3 для простоты взяв начальную фазу алиасных биений равной нулю, при амплитуде А=2 В, равенстве всех диапазонов преобразуемых АЦП напряжений Ei=5 В, равенстве разрядности всех АЦП (5.1-5.n и 6.1-6.n) L=5 (таблица 1 на фиг. 4). Покажем для примера расчет v1 для АЦП 5.1:

Полученные на АЦП (5.1-5.3 и 6.1-6.3) выборки передаются спецпроцессорам БПФ 7.1-7.3 и 8.1-8.3, на выходе которых формируется по девять значений, соответствующих линиям АЧХ в первой зоне Найквиста. В блоках максимальной амплитуды 9.1-9.3 и 10.1-10.3 на основе полученных значений АЧХ производится интерполяция максимума спектра к непозиционному виду: в (9.1-9.3) по основанию pi, а в дополнительных (10.1-10.3) по основанию 2. Алгоритм интерполяции может быть разным, но в данном случае удобно исходить из площади фигуры под кривой спектра в соответствующей непозиционной полосе частот, поскольку такой подход нагляден. Согласно фиг. 5, на выходах основных блоков максимальной амплитуды формируются следующие значения: (9.1) - 1, (9.2) - 2, (9.3) - 2. Согласно фиг. 6, на выходах дополнительных блоков максимальной амплитуды формируются значения: (10.1) - 0, (10.2) - 1, (10.3) - 1. Окончательное формирование кода СОК происходит на блоках вычитания (12.1-12.3): α1=1, α2=(5-1)-2=2, α3=(7-1)-2=4. Таким образом, код в СОК по основаниям p1=3, p2=5, p3=7 равен 1, 2, 4.

Проверим полученный результат. Рассмотрим параллельный АЦП (Хоровиц П., Хилл У. Искусство схемотехники: Пер. с англ. - Изд. 6-е. - М.: Мир, 2003. - 704 с, рис. 9.49) (без смещения нуля на 1/2 младшего разряда), состоящего из делителя опорных напряжений, компараторов, количество которых Р=3*5*7=105, и шифратора. Измеряемое напряжение равно 3,2 В. Получив таблицу опорных напряжений (таблица 2 на фиг. 7), кратных Е/105, где Е=5 В, обнаруживаем, что компараторы с 1-го по 67-й установятся в «1», а все остальные в «0». Следовательно, на выходе шифратора установится код, десятичное представление которого равно 67. Целые остатки от деления числа 67 на 3, 5 и 7 соответственно равны 1, 2 и 4.

Алиасный аналого-цифровой преобразователь, содержащий вход, блок слежения-хранения, n основных аналого-цифровых преобразователей, n выходных шин кодов остатков в системе остаточных классов, где n - число оснований системы остаточных классов, отличающийся тем, что введены основной генератор, управляемый напряжением, n дополнительных генераторов, управляемых напряжением, n дополнительных аналого-цифровых преобразователей, n основных и n дополнительных спецпроцессоров быстрого преобразования Фурье, n основных и n дополнительных блоков максимальной амплитуды, n блоков вычитания и n шин кодов оснований системы остаточных классов, при этом вход устройства объединен с входом блока слежения-хранения, выход которого соединен с входом основного и дополнительных генераторов, управляемых напряжением, при этом выход основного генератора, управляемого напряжением, соединен с входом основных аналого-цифровых преобразователей, а выход i-го дополнительного генератора, управляемого напряжением, соединен с входом i-го дополнительного аналого-цифрового преобразователя, при этом выход i-го основного аналого-цифрового преобразователя соединен с входом i-го основного спецпроцессора быстрого преобразования Фурье, а выход i-го дополнительного аналого-цифрового преобразователя соединен с входом i-го дополнительного спецпроцессора быстрого преобразования Фурье, при этом выход i-го основного спецпроцессора быстрого преобразования Фурье соединен с входом i-го основного блока максимальной амплитуды, а выход i-го дополнительного спецпроцессора быстрого преобразования Фурье соединен с входом i-го дополнительного блока максимальной амплитуды, выход которого соединен с третьим входом i-го блока вычитания, первый вход которого объединен с i-й шиной кодов оснований системы остаточных классов, при этом выход i-го основного блока максимальной амплитуды соединен со вторым входом i-го блока вычитания, выход которого объединен с i-й выходной шиной кодов остатков в системе остаточных классов.
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
АЛИАСНЫЙ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 245.
10.07.2015
№216.013.5c7c

Способ испытания образцов листового материала на растяжение

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях плоской деформации. Способ испытания конструкционного листовых материалов на растяжение заключается в том, что по всей противолежащей рабочей...
Тип: Изобретение
Номер охранного документа: 0002555217
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cad

Способ изготовления проволочного электрода-инструмента для электроэрозионной обработки

Изобретение относится к способу изготовления проволочного электрода-инструмента для электроэрозионной обработки и может быть использовано при электроэрозионном прошивании отверстий малого диаметра с большой глубиной в металлических материалах. Закрепляют конец электрода-инструмента в подвижной...
Тип: Изобретение
Номер охранного документа: 0002555266
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d45

Камера жидкостного ракетного двигателя

Изобретение относится к области ракетной техники может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит смесительную головку, внутреннюю профилированную оболочку, на внешней поверхности которой выполнены ребра тракта охлаждения, наружную...
Тип: Изобретение
Номер охранного документа: 0002555418
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d46

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную головку, регенеративно...
Тип: Изобретение
Номер охранного документа: 0002555419
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6042

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой,...
Тип: Изобретение
Номер охранного документа: 0002556183
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6137

Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции...
Тип: Изобретение
Номер охранного документа: 0002556429
Дата охранного документа: 10.07.2015
Показаны записи 91-100 из 290.
10.01.2015
№216.013.175c

Способ объемной штамповки на механическом прессе

Изобретение относится к обработке металлов давлением и может быть использовано при объемной штамповке на механических прессах. Устанавливают величину закрытой высоты пресса менее закрытой высоты штампа. Заготовку, расположенную на нижней половине штампа, деформируют верхней половиной штампа....
Тип: Изобретение
Номер охранного документа: 0002537408
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175d

Инструмент и способ калибровки отверстий малого сечения в форсунках

Изобретение относится к калибровке отверстий малого сечения в форсунках. Предложен инструмент в виде токопроводящей проволоки с нанесенными нетокопроводящими износостойкими твердыми узкими поясками, наружный диаметр которых уменьшается по длине проволоки пропорционально толщине наносимого...
Тип: Изобретение
Номер охранного документа: 0002537409
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175e

Электрод-инструмент для прошивки отверстий

Изобретение относится к области машиностроения и может быть использовано при прошивке отверстий преимущественно малого диаметра в металлических заготовках. Электрод-инструмент содержит металлическую рабочую часть с рабочим и технологическим торцами, выполненную с возможностью подачи в зону...
Тип: Изобретение
Номер охранного документа: 0002537410
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1807

Способ вырубки

Изобретение относится к разделительным операциям обработки металлов давлением и может быть использовано для вырубки тонкого материала. Заготовку укладывают на торец установленного в жесткой обойме на плите основания из мягкого металла. Осуществляют прижим припуска заготовки, осадку и вырубку...
Тип: Изобретение
Номер охранного документа: 0002537579
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180d

Способ очистки воздуха и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537585
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180e

Конденсационная камера

Изобретение относится к очистке воздуха. Конденсационная камера для установки очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара,...
Тип: Изобретение
Номер охранного документа: 0002537586
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180f

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха. При осуществлении способа пар подают в конденсационную камеру, состоящую из нескольких последовательно расположенных конденсационных секций, каждая из которых содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002537587
Дата охранного документа: 10.01.2015
+ добавить свой РИД