×
12.01.2017
217.015.6351

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ОХЛАЖДЕНИЯ КОМПОНЕНТОВ ТУРБИНЫ

Вид РИД

Изобретение

№ охранного документа
0002589419
Дата охранного документа
10.07.2016
Аннотация: Изобретение относится к энергетике. Способ управления процессом охлаждения компонентов турбины, при котором во время фазы туманного охлаждения для охлаждения компонентов турбины используется разбавленный водяным туманом воздушный поток. В частности, фазе туманного охлаждения предшествует фаза воздушного охлаждения, во время которой для охлаждения компонентов турбины используется воздушный поток. При этом для процесса охлаждения задается один неизменный временной градиент температуры, причем плотность воздушного потока устанавливается посредством положения управляемого регулировочного клапана, и осуществляется переход из фазы воздушного охлаждения в фазу туманного охлаждения, когда достигнута максимальная плотность воздушного потока и, в частности, когда регулировочный клапан полностью открыт. Изобретение позволяет улучшить процесс принудительного охлаждения компонентов турбины. 4 з.п. ф-лы, 2 ил.

Изобретение касается способа управления процессом охлаждения компонентов турбины, в частности вала паровой турбины.

Работы по техническому обслуживанию у турбин и, в частности, у паровых турбин связаны с большими затратами времени, так как компоненты турбины или, соответственно, паровой турбины сначала должны охлаждаться до более низкой температуры, прежде чем турбина сможет быть остановлена и прежде чем смогут выполняться работы по техническому обслуживанию.

При этом соответствующее охлаждение компонентов турбины обычно ускоряется с помощью воздушного потока, чтобы сократить необходимое для работ по техническому обслуживанию время до наименьшего возможного количества. При этом для генерации воздушного потока используется окружающий воздух, температура которого ограничивает охлаждающий эффект воздушного потока при принудительном охлаждении такого рода.

Исходя из этого в основе изобретения лежит задача, указать усовершенствованный способ принудительного охлаждения компонентов турбины.

Эта задача в соответствии с изобретением решается с помощью способа с признаками п.1 формулы изобретения.

Способ служит для управления процессом охлаждения компонентов турбины, при этом во время фазы туманного охлаждения для охлаждения компонентов турбины используется разбавленный водяным туманом воздушный поток. В противоположность водяному пару, который применяется в качестве рабочей среды при эксплуатации паровой турбины, здесь водяной туман представляет собой аэрозоль, то есть смесь воздуха и водяных капелек, которая при фазовом переходе содержащейся воды из жидкой в газообразную фазу может поглощать и отводить тепловую энергию в особенно большом количестве. При этом разбавленный водяным туманом воздушный поток не является рабочей средой. В целях охлаждения он направляется через турбину в качестве другой среды. Таким образом, к простому охлаждению посредством принудительной конвекции, то есть, например, воздушному охлаждению, добавляется дополнительное охлаждение кипением или испарением, благодаря чему эффективность охлаждения значительно повышается относительно простыми средствами. Такого рода дополнение, в частности, предпочтительно тогда, когда уже имеется система охлаждения для простого воздушного охлаждения, так как в этом случае дооснащение может осуществляться без больших технических затрат, при этом должно быть только инсталлировано устройство, с помощью которого генерируется водяной туман и вводится в воздушный поток воздушного охлаждения. Путем комбинации простого воздушного охлаждения с охлаждением кипением возможно управление процессом охлаждения в увеличенном по сравнению с простым воздушным охлаждением диапазоне температуры таким образом, чтобы задавался желаемый зависящий от времени градиент температуры.

По одному из вариантов способа процесс охлаждения является многоступенчатым, при этом фазе туманного охлаждения предшествует фаза воздушного охлаждения, во время которой для охлаждения компонентов турбины используется только воздушный поток без водяного тумана. Соответственно в зависимости от потребности осуществляется принудительное охлаждение компонентов турбины или с помощью воздушного потока, или же с помощью воздушного потока, разбавленного водяным туманом. Таким образом, при различных рабочих режимах системы охлаждения из турбины могут отбираться и отводиться очень разные количества тепла в единицу времени.

По одному из вариантов способа во время фазы воздушного охлаждения и во время фазы туманного охлаждения для процесса охлаждения задается один единый и неизменный временной градиент температуры. При этом, в частности, предпочтителен временной градиент температуры, равный примерно 5-15 К/ч, в частности, примерно 10 К/ч. Для наиболее экономичной возможной эксплуатации турбины целесообразно по возможности сокращать время, требующееся для необходимых работ по техническому обслуживанию. Соответственно желательно охлаждать компоненты турбины до более низкой температуры для соответствующего технического обслуживания как можно быстрее. Однако слишком интенсивное принудительное охлаждение скрывает в себе риск, что, например, в компонентах турбины возникнут напряжения, которые могут привести к повреждениям компонентов турбины. Поэтому при расчете компонентов турбины в рамках проектирования турбины задается максимальный временной градиент температуры. Вследствие этого управление процессом охлаждения в соответствии с представленным здесь способом предпочтительно осуществляется так, чтобы заданный максимальный градиент температуры достигался как можно более точно и поддерживался на протяжении всего процесса охлаждения. Приведенное выше значение градиента температуры, равное примерно 10 К/ч, представляет собой при этом характерное значение для паровых турбин. Такой максимальный временной градиент температуры при этом, как правило, задан для некоторого ограниченного диапазона температуры, поэтому при процессе охлаждения на протяжении очень большого диапазона температуры вполне могут быть заданы несколько разных значений. В этом случае управление процессом охлаждения осуществляется таким образом, чтобы в каждом соответствующем диапазоне температуры достигался заданный для него градиент температуры и поддерживался во всем диапазоне температуры.

В соответствии с одним из очень целесообразных вариантов способа для задания градиента температуры во время фазы воздушного охлаждения регулируется только плотность воздушного потока, а во время фазы туманного охлаждения только количество добавленного в воздушный поток водяного тумана. Благодаря этому возможна особенно простая технически реализация надлежащей системы охлаждения турбины и, в частности, системы управления для этой системы охлаждения. Кроме того, соответствующее управление относительно не предрасположено к ошибкам, так как в рамках управления всегда изменяется только одна переменная.

Кроме того, целесообразно устанавливать плотность воздушного потока посредством положения управляемого впускного клапана. У паровых турбин, например, часто посредством соответствующего устройства вакуумирования в паровой турбине создается разрежение, при этом задается перепад давлений между впуском турбины и выпуском турбины. Таким образом, с помощью размещенного на впуске турбины впускного клапана при постоянной работе устройства вакуумирования с помощью окружающего воздуха может генерироваться воздушный поток, которым могут охлаждаться компоненты паровой турбины. Тогда посредством положения клапана может регулироваться плотность воздушного потока, то есть количество воздуха в единицу времени.

Кроме того, предпочтительно осуществлять переход из фазы воздушного охлаждения в фазу туманного охлаждения, когда достигнута максимальная плотность воздушного потока и, в частности, когда впускной клапан полностью открыт. В случае описанной выше системы охлаждения для паровой турбины, у которой в области впуска паровой турбины используются устройство вакуумирования и впускной клапан для генерирования воздушного потока для охлаждения компонентов турбины, эффективность охлаждения зависит от разности температур между температурой компонентов турбины и температурой окружающего воздуха, используемого для воздушного потока. Эта разность температур в начале процесса охлаждения полностью достаточна для достижения и поддержания в определенном диапазоне температуры заданного максимального градиента температуры. С понижением температуры компонентов турбины эффективность простого воздушного охлаждения, однако, уменьшается, и впускной клапан для поддержания градиента температуры должен продолжать открываться, из-за чего плотность воздушного потока повышается. При продолжении процесса охлаждения однажды достигается момент времени, в который клапан полностью открыт и достигнута максимальная плотность воздушного потока. Чтобы можно было продолжать поддерживать заданный градиент температуры, начиная с этого момента времени в воздушный поток подмешивается водяной туман, причем затем количество водяного тумана регулируется для управления процессом охлаждения и, в частности, для задания градиента температуры.

Кроме того, предпочтителен один из вариантов осуществления способа, при котором воздушный поток или воздушный поток, разбавленный водяным туманом, при необходимости направляется в систему трубопроводов для пара. При этом, в частности, преимущество обеспечивается тогда, когда пар применяется в качестве рабочей среды для турбины, и уже имеется соответствующая система трубопроводов для пара, которая позволяет пропускать рабочую среду через турбину. В этом случае именно эта система трубопроводов, в зависимости от режима работы, может использоваться или для направления рабочей среды, или же для направления охлаждающей среды, то есть воздуха или воздуха, разбавленного водяным туманом.

Кроме того, предпочтительно, если воздушный поток или воздушный поток, разбавленный водяным туманом, вводится в систему трубопроводов в нескольких положениях, в частности, перед каждой ступенью давления паровой турбины. Таким образом может достигаться особенно целесообразное принудительное охлаждение всех компонентов турбины, независимо от их положения внутри турбины.

Кроме того, целесообразен один из вариантов способа, при котором фазе туманного охлаждения предшествует фаза выравнивания температур в процессе охлаждения, в которой происходит взаимное выравнивание температур компонентов турбины, прежде всего, путем теплопередачи. Благодаря этому уменьшаются локальные разности температур внутри турбины, вследствие чего дополнительно снижается риск повреждения турбины.

В частности, в случае паровой турбины, кроме того, предпочитается один из вариантов способа, при котором в начале процесса охлаждения предусмотрена фаза парового охлаждения, во время которой для охлаждения компонентов турбины используется рабочая среда, то есть, например, водяной пар. При этом температура рабочей среды постепенно снижается, причем обычно во время этой фазы охлаждения турбина продолжает работать, то есть, в частности, генерирует электрическую энергию.

В предпочтительном усовершенствовании во время фазы парового охлаждения для процесса охлаждения задается неизменный временной градиент температуры, который отличается от градиента температуры во время фазы воздушного охлаждения и во время фазы туманного охлаждения, в частности, превышает их.

Кроме того, предпочтительно, когда в качестве водяного тумана применяется тончайшим образом распыленная деминерализованная вода. Тем самым предотвращается осаждение минералов на компонентах турбины при выпаривании водяных капелек из водяного тумана.

Целесообразен, наконец, один из вариантов способа, при котором деминерализованная вода применяется как для создания водяного тумана, так и в качестве рабочей среды. Так как деминерализованная вода должна приготавливаться с определенными техническими затратами, применение деминерализованной воды, прежде всего, предпочтительно тогда, когда уже предусмотрена соответствующая деминерализованная вода в качестве рабочей среды для турбины и соответственно уже имеется в распоряжении.

Примеры осуществления изобретения поясняются подробнее ниже с помощью схематичного чертежа.

На нем показано:

фиг. 1: на графике зависимость от времени локальной температуры в паровой турбине и

фиг. 2: на изображении блок-схемы паровая турбина, снабженная управляемым устройством охлаждения.

Соответствующие друг другу части на всех фигурах всегда снабжены одинаковыми ссылочными изображениями.

Описанный ниже способ служит для управления процессом принудительного охлаждения компонентов паровой турбины 2, при этом управление осуществляется таким образом, что, как изображено на фиг. 1, в обширном диапазоне температуры для процесса охлаждения задается постоянный во времени градиент температуры. Задание градиента температуры происходит при этом с помощью устройства 4 управления охлаждением, которое анализирует данные сенсоров 6 температуры, расположенных в паровой турбине 2, и на их основании настраивает систему охлаждения.

Процесс охлаждения в этом примере осуществления разделен на четыре последовательные фазы P1…P4. В первой фазе P1 процесса охлаждения температура рабочей среды, здесь водяного пара, регулируется в сторону понижения, вследствие чего компоненты паровой турбины 2 охлаждаются до более низкой температуры с градиентом температуры, равным примерно 30 К/ч. Во время фазы P1 парового охлаждения паровая турбина 2 продолжает генерировать электрическую энергию, хотя электрическая энергия, генерируемая в единицу времени, постоянно уменьшается.

При температуре компонентов турбины, равной примерно 390°C, происходит переход из фазы парового охлаждения в фазу P2 выравнивания температур. В этой фазе процесса охлаждения охлаждение компонентов турбины посредством конвекции прерывается, чтобы могло произойти взаимное выравнивание температур компонентов турбины путем теплопередачи. Тем самым должны устраняться большие разности температур внутри паровой турбины 2.

Примерно через 6 часов фаза P2 выравнивания температур заканчивается, и начинается фаза P3 воздушного охлаждения. Во время этой фазы P3 воздушного охлаждения генерируется воздушный поток, который направляется через компоненты турбины. Таким образом, принудительное охлаждение компонентов турбины снова осуществляется путем охлаждения посредством конвекции, при этом охлаждающая среда теперь уже представляет собой не водяной пар, а воздушный поток, для генерирования которого используется окружающий воздух. При этом плотность воздушного потока постоянно повышается, чтобы таким образом задавать для процесса охлаждения компонентов турбины градиент температуры, равный примерно 10 К/ч. При этом с повышением плотности воздушного потока разность между температурой компонентов турбины и температурой используемого для охлаждения окружающего воздуха, уменьшаясь, выравнивается, так что в итоге осуществляется равномерное принудительное охлаждение.

Когда достижимая с помощью устройства охлаждения максимальная плотность воздушного потока достигнута, то простого охлаждения посредством воздушного потока больше не достаточно, чтобы продолжать поддерживать для процесса охлаждения желаемый градиент температуры. Это, в зависимости от температуры охлаждающего воздуха, происходит обычно при температуре компонентов турбины, равной примерно 200°C. С этого момента времени начинается четвертая и последняя фаза процесса охлаждения, которая ниже называется фазой P4 туманного охлаждения. Во время этой фазы P4 туманного охлаждения в воздушный поток, для которого продолжает поддерживаться максимально возможная плотность потока, дополнительно добавляется тончайшим образом распыленная деминерализованная вода. При этом охлаждение посредством конвекции дополняется охлаждением испарением, что позволяет поддерживать для процесса охлаждения желаемый градиент температуры. При этом для регулирования градиента температуры регулируется количество деминерализованной воды, которая добавляется в воздушный поток в виде тончайшим образом распыленной воды.

При температуре компонентов турбины от 100°C до 150°C управляемый процесс охлаждения, наконец, заканчивается и обычно следует открытие паровой турбины 2 и, в частности, открытие, как правило, предусмотренного корпуса. Затем производятся очередные работы по техническому обслуживанию, в связи с которыми обычно осуществляется остановка и охлаждение паровой турбины 2.

Наряду с изображенной на фиг. 1 сплошной кривой, которая воспроизводит характеристику температуры компонентов турбины при принудительном охлаждении в соответствии с представленным здесь способом, дополнительно на чертеже изображена отличающаяся от нее характеристика температуры. Эта отличающаяся характеристика температуры компонентов турбины характерна для процесса охлаждения, при котором осуществляется принудительное охлаждение исключительно с помощью воздушного потока без дополнительного ввода водяного тумана в воздушный поток. При этой характеристике температуры диапазон температуры от 100°C до 150°C, в котором обычно начинаются работы по техническому обслуживанию, достигнут намного позднее. Соответственно периоды производственных простоев паровой турбины 2 при работах по техническому обслуживанию при применении представленного здесь способа существенно сокращаются, что позволяет более экономично использовать паровую турбину 2.

Один из возможных вариантов осуществления установки, в которой применяются паровая турбина 2 и устройство охлаждения для осуществления представленного здесь способа, схематично изображен на фиг. 2. В качестве примера эта установка включает в себя при этом паровую турбину 2, имеющую ступень 8 высокого давления, ступень 10 среднего давления, а также ступень 12 низкого давления, расположенный между ступенью 8 высокого давления и ступенью 10 среднего давления узел 14 перегревателя, парогенератор 16, конденсатор 18 и систему 20 трубопроводов для рабочей среды, здесь деминерализованной воды и соответствующего водяного пара.

Частью установки является также резервуар 22, с помощью которого при необходимости может компенсироваться потеря деминерализованной воды.

Чтобы при необходимости можно было осуществлять принудительное охлаждение, в частности, ступеней 8 и 10 давления в соответствии с представленным здесь способом и можно было при соответственно осуществляемом процессе принудительного охлаждения управлять охлаждением, установка имеет узел 4 управления охлаждением, который предпочтительно является частью центрального узла управления установки.

Когда, например, обслуживающим персоналом инициируется процесс охлаждения, то узел 4 управления охлаждением сначала настраивает парогенератор 16 и узел 14 перегревателя, так чтобы температура испаренной деминерализованной воды, которая направляется через ступени 8, 10, 12 давления, постепенно снижалась. Таким образом осуществляется фаза P1 парового охлаждения.

При переходе в фазу P2 выравнивания температур два запорных клапана 24 и два регулировочных клапана 26, из которых один расположен в подводящем трубопроводе системы 20 трубопроводов к ступени 8 высокого давления и из которых один в подводящем трубопроводе системы 20 трубопроводов к ступени 10 среднего давления, закрываются, вследствие чего охлаждение посредством конвекции прекращается. Вместо этого происходит выравнивание температур путем теплопередачи внутри степеней 8, 10, 12 давления. В это время оба подводящих трубопровода каждый посредством фланца F открываются в направлении окружающей среды.

В начале следующей за этим фазы P3 воздушного охлаждения регулировочные клапаны 26 постепенно открываются, так чтобы окружающий воздух в каждом случае мог втекать через отверстие 28 в подводящие трубопроводы системы 20 трубопроводов к ступеням 8, 10, 12 давления. Одновременно в конденсаторе 18 посредством соответствующего, однако явно не изображенного устройства вакуумирования задается разрежение, так чтобы вследствие этого окружающий воздух втекал в отверстия 28 и протекал через ступени 8, 10, 12 давления. При этом посредством положения регулировочных клапанов 26 устанавливается плотность воздушного потока через каждую ступень 8, 10, 12 давления.

Для начала фазы P4 туманного охлаждения дополнительно деминерализованная вода из резервуара 22 с помощью распылительных в 30 подмешивается в используемый для охлаждения воздушный поток, так что в результате воздушный поток, разбавленный тончайшим образом распыленной деминерализованной водой, направляется через ступени 8, 10, 12 давления для их охлаждения. Вследствие этого поддерживается постоянная плотность воздушного потока, и только количество деминерализованной воды, которая добавляется в воздушный поток, варьируется, пока ступени 8, 10, 12 давления не будут охлаждены до желаемой более низкой температуры.

Изобретение не ограничено описанным выше примером осуществления. Более того, специалист может вывести отсюда другие варианты изобретения без выхода за рамки предмета изобретения. Кроме того, в частности, все описанные в связи с этим примером осуществления отдельные признаки могут также комбинироваться друг с другом иным образом без выхода за рамки предмета изобретения.


СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ОХЛАЖДЕНИЯ КОМПОНЕНТОВ ТУРБИНЫ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ОХЛАЖДЕНИЯ КОМПОНЕНТОВ ТУРБИНЫ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ОХЛАЖДЕНИЯ КОМПОНЕНТОВ ТУРБИНЫ
Источник поступления информации: Роспатент

Показаны записи 751-760 из 1 427.
25.08.2017
№217.015.ccb2

Лопатка ротора газовой турбины, ротор газовой турбины и способ сборки ротора

Лопатка ротора газовой турбины, включающая в себя корневую часть, платформу и перьевую часть. Платформа содержит входную и выходную стороны, боковые стороны, проходящие от входной к выходной стороне, а также осевую и радиальную канавки в каждой боковой стороне платформы. Радиальная канавка...
Тип: Изобретение
Номер охранного документа: 0002620472
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ccca

Композиционный материал для термического накопителя энергии и способ получения композиционного материала для термического накопителя энергии

Изобретение относится к композиционному материалу для термического накопителя энергии с термопластичным материалом, а также к способу получения такого композиционного материала. Композиционный материал содержит термопластичный материал с изменяемым фазовым состоянием, в который с заданным...
Тип: Изобретение
Номер охранного документа: 0002620843
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.cd39

Выдвижная рама для электрического выдвижного коммутационного аппарата, а также блок из выдвижной рамы и электрического выдвижного коммутационного аппарата

Изобретение относится к электротехнике, к электрическим коммутационным аппаратам. Технический результат состоит в упрощении блокирования выдвижной рамы. Выдвижная рама для электрического выдвижного коммутационного аппарата, в частности выдвижного силового выключателя, имеет переходной цоколь...
Тип: Изобретение
Номер охранного документа: 0002619763
Дата охранного документа: 18.05.2017
25.08.2017
№217.015.cd6c

Охлаждаемые составные листы для газовой турбины

Слоистый лист для детали газовой турбины содержит первый и второй покрывающие слои и первый промежуточный слой. Первый покрывающий слой, второй покрывающий слой и первый промежуточный слой сложены вместе один на другой. Первый промежуточный слой расположен между первым покрывающим слоем и...
Тип: Изобретение
Номер охранного документа: 0002619664
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.cda6

Светофор

Оптическая система светофора содержит линзу (13) Френеля с френелевскими структурами (15) на внутренней поверхности входа света, при этом наружная поверхность выхода света (16) выполнена таким образом, что каждая касательная (17) к наружной поверхности выхода света (16) образует угол ≥ 105° по...
Тип: Изобретение
Номер охранного документа: 0002619678
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.d024

Система сквозной вентиляции, предназначенная для комплектной энергетической газотурбинной установки

Изобретение относится к энергетике. Энергетическая установка (100) содержит кожух (108) с первой секцией (I) кожуха и второй секцией (II) кожуха, причём генератор (110) переменного тока расположен в пределах первой секции (I) кожуха, а газовая турбина (120) расположена в пределах второй секции...
Тип: Изобретение
Номер охранного документа: 0002620878
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d1c6

Уплотнительная втулка для паровой турбины и паровая турбина

Настоящее изобретение относится к уплотнительной втулке (1) для паровой турбины (40). Паровая турбина (40) содержит по меньшей мере ротор (41) турбины и корпус (43) турбины, при этом уплотнительная втулка (1) размещена между валом (42) ротора (41) и корпусом (43) и содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002621447
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d1e3

Отделитель для диоксида углерода, способ его эксплуатации и отделительный узел

Изобретение относится к отделителю для диоксида углерода. Описан отделитель диоксида углерода, содержащегося, в частности, в дымовом газе электростанции на ископаемом топливе, включающий в себя абсорбционный узел, приданный ему десорбционный узел и отделительный узел для отделения солей из...
Тип: Изобретение
Номер охранного документа: 0002621809
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d412

Система с газовым уплотнением

Изобретение относится к системе с газовым уплотнением (GS), статором (S) и проходящим вдоль оси (X) ротором (R) для уплотнения уплотнительного зазора (SGP) между ротором (R) и статором (S), включающее в себя вращающееся уплотнительное кольцо (RSR) ротора и неподвижное уплотнительное кольцо...
Тип: Изобретение
Номер охранного документа: 0002622445
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.d711

Система щеточных уплотнений

Изобретение относится к системе щеточных уплотнений для уплотнения зазора (1) между ротором (2) и статором (3). Щеточное уплотнение (9) включает корпус (4) щетки и множество закрепленных в корпусе (4) щетки щетинок (5). Свободные концы щетинок (5) опираются по отношению к уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002623322
Дата охранного документа: 23.06.2017
Показаны записи 751-760 из 943.
25.08.2017
№217.015.b70e

Возбуждение дополнительного лазера для устойчивости горения

Изобретение относится к энергетике. Система сжигания содержит камеру (100) сгорания, имеющую концевую секцию (101) и предсекцию (102) сгорания, продолжающуюся от концевой секции (101) вдоль центральной оси (103) камеры (100) сгорания, турбулизирующее устройство (110), необязательное запальное...
Тип: Изобретение
Номер охранного документа: 0002614754
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b83b

Эксплуатация и диагностика клапанов

Группа изобретений относится к способу и устройству проверки клапанного узла. Способ диагностики клапанного узла с клапанными элементами, последовательно расположенными вдоль проточного канала клапанного узла, включает в себя этапы открытия всех последовательно расположенных клапанных элементов...
Тип: Изобретение
Номер охранного документа: 0002615307
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b8b6

Способ и устройство для оценки величин дефектов посредством saft (способа фокусировки синтезированной апертуры)

Использование: для оценки величин дефектов в тестируемом объекте при ультразвуковом тестировании. Сущность изобретения заключается в том, что выполняют оценку величин дефектов в тестируемом объекте, реализуя следующие этапы: определение (S1) набора данных измерений тестируемого объекта;...
Тип: Изобретение
Номер охранного документа: 0002615208
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b98f

Направляющая лопатка турбины, снабженная дроссельным элементом

Направляющая лопатка турбины имеет аэродинамически изогнутую рабочую часть лопатки, которая имеет снабженную дроссельным элементом канальную систему из канальных участков для направления охлаждающего средства. Дроссельный элемент выполнен для отбора охлаждающего средства. При этом дроссельный...
Тип: Изобретение
Номер охранного документа: 0002615091
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9c8

Радиочастотный сумматор мощности, функционирующий как фильтр высших гармоник

Изобретение относится к конструкции фильтра высших гармоник, в частности к радиочастотному сумматору мощности, функционирующему как фильтр высших гармоник. Устройство содержит, по меньшей мере, одну пару установленных соосно металлических проводников в форме диска, по меньшей мере, один из...
Тип: Изобретение
Номер охранного документа: 0002615049
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.be7c

Способ запуска системы сгорания

Изобретение относится к способу запуска системы сгорания, содержащей первое устройство воспламенения и по меньшей мере второе устройство воспламенения, узел обработки и систему датчиков. Способ содержит, в качестве последовательности запуска, по меньшей мере следующие этапы: отслеживают во...
Тип: Изобретение
Номер охранного документа: 0002616739
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bed9

Газотурбинный двигатель

Газотурбинный двигатель содержит камеру сгорания и узел направляющих лопаток. Узел направляющих лопаток содержит первый и второй узлы направляющих лопаток, расположенные вдоль окружного направления турбины, а также дополнительный первый узел направляющих лопаток. Первый узел направляющих...
Тип: Изобретение
Номер охранного документа: 0002616743
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bfd6

Способ дооборудования газотурбинной электростанции

Изобретение относится к способу дооборудования уже существующей газотурбинной электростанции. Способ, в котором осуществляют аэродинамическое соединение эксплуатируемой на объекте газовой турбины простого цикла с трубопроводом дымового газа, пригодным для проведения выработанного газовой...
Тип: Изобретение
Номер охранного документа: 0002616640
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c118

Ускоритель частиц с переключающим устройством вблизи ускорительной секции

Ускоритель частиц имеет по меньшей мере одну ускорительную секцию (1) и устройство (5) электропитания. Устройство (5) электропитания с ускорительной секцией (1) соединено через фидерную линию (6), так что на ускорительную секцию (1) электрическая энергия может подаваться через фидерную линию...
Тип: Изобретение
Номер охранного документа: 0002617440
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c199

Корпус для электрической машины

Изобретение относится к области электротехники и касается корпуса электрической машины. Технический результат – повышение эффективности охлаждения. Корпус содержит область охлаждения множеством ребер для направления потока охлаждающего средства по наружной поверхности корпуса, область подвода,...
Тип: Изобретение
Номер охранного документа: 0002617416
Дата охранного документа: 25.04.2017
+ добавить свой РИД