×
12.01.2017
217.015.634d

РАЗМЕР ЭЛЕМЕНТА МОЗАИЧНОГО ИЗОБРАЖЕНИЯ ПРИ КОДИРОВАНИИ ВИДЕО

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002589341
Дата охранного документа
10.07.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к видеокодированию. Технический результат заключается в уменьшении объема внутрикристаллической памяти за счет ограничения минимальной ширины элемента мозаичного изображения. Видеокодер, выполненный с возможностью кодирования видеопоследовательности, содержит модуль разделения, выполненный с возможностью разделения видеопоследовательности на элементы мозаичного изображения, при этом размер элемента мозаичного изображения больше, чем предварительно определенный минимальный размер элемента мозаичного изображения, и по меньшей мере один модуль кодирования, выполненный с возможностью кодирования элементов мозаичного изображения. 5 н. и 10 з.п. ф-лы, 6 ил.
Реферат Свернуть Развернуть

Область техники, к которой относится изобретение

Настоящая заявка относится к видеокодеру, способу в видеокодере, видеодекодеру, способу в видеодекодере и считываемому компьютером носителю.

Уровень техники

Высокоэффективное кодирование видео (HEVC) является проектом стандарта сжатия видео и преемником H.264/MPEG-4 AVC (усовершенствованного кодирования видео). HEVC разрабатывается совместно экспертной группой по движущимся изображениям (MPEG) ISO/IEC и экспертной группой по кодированию видео (VCEG) ITU-T как часть 2 ISO/IEC 23008-2 MPEG-H и ITU-T H.HEVC.

Основной частью слоя кодирования в предыдущих стандартах был макроблок, содержащий блок 16×16 элементов дискретизации яркости, и в обычном случае с цветовой дискретизацией 4:2:0, два соответствующих блока 8×8 элементов дискретизации цветности, в то время как аналогичная структура в HEVC является единицей дерева кодирования (CTU), которая имеет размер, выбираемый кодером, и может быть больше, чем традиционный макроблок. CTU состоит из блока дерева кодирования яркости (СТВ) и соответствующих СТВ цветности и элементов синтаксиса. Размер L×L СТВ яркости может быть выбран как L=16, 32 или 64 элементов дискретизации, причем большие размеры обычно обеспечивают лучшее сжатие. HEVC затем поддерживает разделение СТВ на меньшие блоки с использованием структуры дерева и сигнализации типа дерева квадрантов.

Синтаксис дерева квадрантов CTU задает размер и позиции ее блоков кодирования (CB) яркости и цветности. Корень дерева квадрантов ассоциируется с CTU. Следовательно, размер СТВ яркости является наибольшим поддерживаемым размером для СВ яркости. Разбиение CTU на СВ яркости и цветности сигнализируется совместно. Один СВ яркости и обычно два СВ цветности, вместе с ассоциированным синтаксисом, формируют единицу кодирования (CU). СТВ может содержать только одну CU или может быть разбит для формирования множественных CU, и каждая CU имеет ассоциированное разделение на единицы предсказания (PU) и дерево единиц преобразования (TU).

Решение о том, кодировать ли область изображения с использованием предсказания между изображениями или внутри изображения, принимается на уровне CU. Структура разделения единицы предсказания (PU) имеет свой корень на уровне CU. В зависимости от решения относительно основного типа предсказания, СВ яркости и цветности затем могут быть дополнительно разбиты по размеру и предсказаны из блоков предсказания (РВ) яркости и цветности. HEVC поддерживает переменные размеры РВ от элементов дискретизации 64×64 до 4×4.

Ниже по тексту, где ссылка делается на единицу кодирования (CU), она может относиться к блоку кодирования (СВ) либо яркости, либо цветности, либо даже и того, и другого. Единица кодирования HEVC аналогична макроблоку, используемому в других стандартах кодирования видео.

Стандарт кодирования видео Н.264 определяет так называемые профили и уровни. Профиль является поднабором инструментов кодирования, заданных в стандарте, который обычно предназначается для конкретного набора приложений. В Н.264 имеются несколько профилей, такие как базовый профиль (предназначенный для мобильных приложений и приложений проведения конференций), главный профиль (предназначенный для телевидения) и высокий профиль (предназначенный для кодирования высокого разрешения видео). Может быть непрактичным требовать от декодера реализовать возможности декодирования для декодирования всех возможных комбинаций размеров изображения и скоростей передачи в битах в рамках выбранного профиля. По этой причине в Н.264 заданы “уровни”. Уровни накладывают ограничения на значения элементов синтаксиса, разрешенных в профиле, таких как скорость передачи в битах и размеры изображения.

Отдельно в стандарт высокоэффективного кодирования видео (HEVC) недавно был принят инструмент, называемый «элементы мозаичного изображения». Этот инструмент изменяет порядок декодирования наибольших единиц кодирования (LCU, альтернативно, наибольших блоков дерева (LTB), или единиц дерева кодирования (CTU)). Элементы мозаичного изображения могут быть истолкованы как области изображения, определенные набором вертикальных и/или горизонтальных линий, делящих изображение на прямоугольники. Эти прямоугольники являются элементами мозаичного изображения. LCU декодируются в порядке растрового сканирования внутри каждого элемента мозаичного изображения, а элементы мозаичного изображения декодируются в порядке растрового сканирования внутри изображения. По сравнению с обычным порядком декодирования растрового сканирования, элементы мозаичного изображения влияют на доступность соседних единиц кодирования (или блоков дерева) для предсказания и могут включать в себя или не включать в себя перенастройку любого энтропийного кодирования.

Фигура 1 показывает пример разделения элемента мозаичного изображения с использованием трех столбцов, отделенных границами 110 столбца, и трех рядов, отделенных границами 120 ряда. Фигура 1 показывает множество LCU 100, первые 41 из которых пронумерованы.

Фигура 2 показывает пример разделения элемента мозаичного изображения с использованием трех столбцов, отделенных границами 210 столбца, и одного ряда. Столбцы разделены на слайсы границей 230 слайса. Фиг. 2 показывает множество LCU 200, первые 14 из которых пронумерованы.

Каждый элемент мозаичного изображения содержит целое число LCU. LCU обрабатываются в порядке растрового сканирования в каждом элементе мозаичного изображения, а сами элементы мозаичного изображения обрабатываются в порядке растрового сканирования в изображении. Границы слайса вводятся кодером.

Разделение изображения на слайсы, как часть процесса кодирования известно, как отрицательно влияющее на эффективность кодирования, в частности, когда слайсы задуманы как независимо декодируемые. Однако многие приложения и реализации в настоящее время требуют разделения изображения. Например:

- Параллельная обработка: некоторые реализации, такие как те, которые исполняются в современных многоядерных CPU, разделяют исходное изображение на слайсы и отправляют каждый слайс в отдельное ядро для параллельного кодирования. Высококачественное кодирование в реальном времени видео высокого разрешения (например, 1280×720 и больше) не было бы возможно в настоящее время в многоядерном CPU общего назначения без разделения и параллельного кодирования. Кроме того, чтобы сократить затратное совместное использование информации между ядрами во время процесса кодирования/декодирования, обычно выгодно, чтобы слайсы кодировались независимо.

- Согласование размера MTU: при транспортировке кодированного битового потока в IP-сети пакеты подчиняются размеру максимальной единицы передачи (MTU). Если пакет содержит значительно меньше битов, чем размер MTU, тогда неэффективное использование битов заголовка пакета может существенно влиять на эффективность кодирования. Однако, если пакет содержит больше битов, чем размер MTU, сеть будет фрагментировать пакет. Кроме того, потерянный фрагмент пакета дает в результате проблему устойчивости к ошибкам, поскольку весь пакет является невосстановимым, если потерян один фрагмент. Один способ, чтобы избежать фрагментации пакета, состоит в разделении изображения на один или более слайсов, помещении каждого слайса в отдельный пакет, в то же время, удостоверяясь, что каждый пакет меньше, чем размер MCU.

- Устойчивость к ошибкам: некоторые приложения разделяют изображения на независимо декодируемые слайсы и применяют неодинаковые методы защиты от ошибок, чтобы защищать слайсы, считающиеся более важными.

Одним важным аспектом при рассмотрении практической реализации кодирования видео в аппаратном обеспечении является число каналов обращения к памяти. Для того чтобы уменьшить число выполняемых доступов считывания и записи к памяти, в Н.264 используется декодирование порядка макроблоков. В этом случае блок восстанавливается, затем применяется деблокирование (удаление блочности) для внутренних границ блока, а затем применяется деблокирование к границам с уже восстановленными блоками. После всего этого блок записывается обратно в память. Однако деблокирование не может быть применено к границам с блоками, которые еще не были восстановлены. Вследствие этого, пиксели, которые еще не обработаны деблокирующим фильтром (удаления блочности), сохраняются в буферной памяти, иногда упоминаемой как буфер линий. Поскольку макроблоки обрабатываются в порядке растрового сканирования, пиксели в граничной области на правой границе макроблока должны храниться в памяти до тех пор, пока не будет восстановлен следующий макроблок справа, и не может быть применено деблокирование. Однако для нижней границы макроблока информация о восстановленных пикселях должна храниться в буферной памяти до тех пор, пока не будет восстановлен и обработан макроблок в следующем ряду.

Если, например, деблокирующий фильтр на границах макроблока использует четыре пикселя с каждой стороны границы, тогда четыре линии пикселей вдоль нижней границы должны храниться до тех пор, пока не будет восстановлен следующий ряд макроблоков. В этом случае объем требуемой буферной памяти равен 4 линиям ширины изображения. Необходимая буферная память может равняться значительному объему памяти, в частности для видео высокого разрешения, что означает более высокие стоимости аппаратного обеспечения для декодера (поскольку буферная память находится на кристалле и, таким образом, является существенно более дорогой, чем память вне кристалла).

В данном документе, термин «граничный слой» используется для обозначения количества пикселей, которые должны быть сохранены в процессе деблокирования, как описано выше по тексту. Граничный слой блока содержит множество пикселей, значения которых используются деблокирующим фильтром во время декодирования последующего блока.

В HEVC проблема с требованиями к буферу линий становится еще более важной, поскольку стандарт HEVC имеет целью разрешения, более высокие, чем текущее определение высокого разрешения (1920 на 1080 пикселей). Кроме того, HEVC также имеет внутриконтурные (in-loop) фильтры, отличные от деблокирующего фильтра, например адаптивное к элементу дискретизации смещение (SAO) и адаптивный контурный фильтр (ALF). Эти контурные фильтры применяются поверх деблокирующего фильтра и вносят дополнительное увеличение требуемого размера буфера линий, поскольку пиксели на нижней границе LCU (наибольшей единицы кодирования) еще не были обработаны деблокированием и, вследствие этого, не могут использоваться в качестве ввода в SAO и ALF. Вследствие этого, буфер линий для декодера HEVC должен имеет больше линий, чем Н.264, что вместе с большей шириной изображения требует обеспечения намного большей внутрикристальной памяти для буферов линий.

«Working Draft 4 of High-Efficiency Video Coding», JCTVC-F803, Italy, July 2011 дает общее описание стандарта HEVC, в настоящее время еще находящегося в разработке.

Arild Fuldseth, Michael Horowitz, Shilin Xu, Andrew Segall, Mingua Zhou, “Tiles” («элементы мозаичного изображения»), JCTVC-F335, Italy, July 2011 предоставляет описание методики кодирования, упоминаемой как «элементы мозаичного изображения».

Сущность изобретения

Концепция, введенная в данный документ, состоит в ограничении минимального размера элемента мозаичного изображения для уровней HEVC видео. Дополнительная память линий может требоваться для столбцов, ближайших к правой границе элемента мозаичного изображения. То есть, может быть дополнительная граничная область из некоторого числа столбцов пикселей на правой границе элемента мозаичного изображения. (Значения пикселей этих столбцов должны храниться до тех пор, пока элемент мозаичного изображения справа, не будет декодирован (но не деблокирован), поскольку значения пикселей с каждой стороны границы требуются, для того чтобы правильно деблокировать границу). Однако доступ к этой дополнительной памяти линий должен осуществляться только один раз для каждого элемента мозаичного изображения и, таким образом, она может содержаться в памяти вне кристалла декодера и считываться, по мере необходимости, без значительного увеличения числа каналов обращения к памяти. Это подход мог бы вызывать задержку, если ширина элемента мозаичного изображения является слишком малой, но эта проблема может быть преодолена с помощью наложения ограничения на минимальную ширину элемента мозаичного изображения.

Дополнительная концепция, введенная в данный документ, состоит в ограничении максимального размера элемента мозаичного изображения для уровней HEVC видео. Она будет ограничивать объем внутрикристальной памяти, которая требуется для внутриконтурной фильтрации (а также для внутреннего (intra-) предсказания), что означает, что закодированный поток видео может быть декодирован декодером, имеющим буфер линий меньшей емкости и, следовательно, более низкую стоимость производства.

Таким образом, предоставлен видеокодер, выполненный с возможностью кодирования видеопоследовательности, причем видеокодер содержит модуль разделения, и по меньшей мере один модуль кодирования. Модуль разделения выполнен с возможностью разделения видеопоследовательности на элементы мозаичного изображения, при этом размер элемента мозаичного изображения больше, чем предварительно определенный минимальный размер элемента мозаичного изображения. По меньшей мере один модуль кодирования выполнен с возможностью кодирования элементов мозаичного изображения.

Кодер может быть выполнен с возможностью оптимизации кодирования для конкретного видеодекодера, причем конкретный декодер выполнен с возможностью сохранения правой границы элемента мозаичного изображения в памяти вне кристалла. Установка минимального размера элемента мозаичного изображения накладывает верхнюю границу на частоту, с которой должен быть осуществлен доступ к памяти вне кристалла. Это сокращает влияние какой-либо задержки, вызываемой осуществлением доступа к памяти вне кристалла.

Размер элемента мозаичного изображения может быть по меньшей мере одним из: высоты элемента мозаичного изображения, ширины элемента мозаичного изображения и периметра элемента мозаичного изображения.

Дополнительно предоставлен способ в видеокодере, причем способ содержит разделение видеопоследовательности на элементы мозаичного изображения, при этом размер элемента мозаичного изображения больше, чем предварительно определенный минимальный размер элемента мозаичного изображения. Способ дополнительно содержит кодирование элементов мозаичного изображения.

Дополнительно предоставлен видеодекодер, выполненный с возможностью декодирования закодированной видеопоследовательности, причем видеопоследовательность закодирована в элементах мозаичного изображения, причем видеодекодер содержит единицу кодирования и деблокирующий фильтр. Модуль декодирования единиц кодирования выполнен с возможностью декодирования единиц кодирования изображений в закодированной видеопоследовательности. Деблокирующий фильтр выполнен с возможностью сглаживания границ между единицами кодирования, при этом деблокирующий фильтр осуществляет доступ к правой границе элемента мозаичного изображения, сохраненной в памяти вне кристалла.

Дополнительно предоставлен способ в видеодекодере, причем видеодекодер выполнен с возможностью декодирования закодированной видеопоследовательности, причем видеопоследовательность закодирована в элементах мозаичного изображения. Способ содержит декодирование единиц кодирования изображений в закодированной видеопоследовательности. Способ дополнительно содержит сглаживание границ между единицами кодирования с использованием деблокирующего фильтра, при этом деблокирующий фильтр осуществляет доступ к правой границе элемента мозаичного изображения, сохраненной в памяти вне кристалла.

Также предоставлен считываемый компьютером носитель, переносящий инструкции, которые при исполнении компьютерной логикой побуждают упомянутую компьютерную логику выполнять любой из способов, определенных в данном документе.

Краткое описание чертежей

Способ и устройство для ограничения размера элемента мозаичного изображения при кодировании видео теперь будут описаны, только в качестве примера, со ссылкой на сопровождающие чертежи, на которых:

Фигура 1 показывает первый пример разделения элемента мозаичного изображения;

Фигура 2 показывает второй пример разделения элемента мозаичного изображения;

Фигура 3 показывает видеокодер;

Фигура 4 показывает видеодекодер;

Фигура 5 иллюстрирует способ кодирования видеопоследовательности; и

Фигура 6 иллюстрирует способ декодирования видеопоследовательности.

Подробное описание изобретения

Как понятно из Фигур 1 и 2, если декодирование и фильтрация выполняются в порядке элементов мозаичного изображения, тогда только значения пикселей в граничной области элемента мозаичного изображения должны сохраняться во внутрикристальной памяти. Это представляет противоположность декодированию и фильтрации изображения без элементов мозаичного изображения, посредством чего граничная область линий полной ширины изображения должна сохраняться в линейном буфере. Следовательно, требуется меньшая буферная память, когда используются элементы мозаичного изображения. Способ и устройство, описанные в данном документе, таким образом, делают элементы мозаичного изображения обязательными для некоторых профилей и уровней, а также накладывают ограничение на максимальную ширину элемента мозаичного изображения.

В некоторых вариантах осуществления некоторая дополнительная память линий могла бы требоваться для столбцов, ближайших к правой границе элемента мозаичного изображения. То есть, может быть дополнительная граничная область из некоторого числа столбцов пикселей на правой границе элемента мозаичного изображения. Однако доступ к этой дополнительной памяти линий должен осуществляться только один раз для каждого элемента мозаичного изображения и, таким образом, она может содержаться в памяти вне кристалла декодера и считываться, по мере необходимости, без существенного увеличения числа каналов обращения к памяти. Это подход мог бы вызывать задержку, если ширина элемента мозаичного изображения является слишком малой, но этой проблеме можно противодействовать с помощью наложения дополнительного ограничения на минимальную ширину элемента мозаичного изображения.

Наличие нескольких элементов мозаичного изображения вертикально (как на Фигуре 1), также требует загрузку внутрикристальной памяти, более часто, при переключении обратно между рядами элементов мозаичного изображения. Следовательно, ограничение на минимальный размер элемента мозаичного изображения по вертикали также может быть наложено, чтобы противодействовать любой задержке, создаваемой этим.

Размер наибольшей единицы кодирования определяется площадью элемента мозаичного изображения, которая равна tile_width*tile_height (ширина элемента мозаичного изображения*высота элемента мозаичного изображения). Размер элемента мозаичного изображения может быть ограничен с помощью наложения ограничения на число LCU в элементе мозаичного изображения. Минимальное и максимальное значения для числа LCU могли бы задаваться для каждого уровня кодирования.

Другая альтернатива состоит в ограничении значения суммы tile_width+tile_height (ширина элемента мозаичного изображения*высота элемента мозаичного изображения), поскольку она определяет размер внутрикристальной памяти, требуемый в декодере. Следовательно, также можно ограничить значение суммы tile_width+tile_height максимальным или минимальным значениями (или, как минимальным, так и максимальным значениями).

Ограничения на размер элемента мозаичного изображения могут быть выражены по высоте числом LCU, по ширине числом LCU или числом LCU в элементе мозаичного изображения (tile_width_in_LCU*tile_height_in_LCU). Эти ограничения также могут быть выражены в пикселях.

В первом варианте осуществления ограничение maximum_tile_width (максимальная ширина элемента мозаичного изображения) применяется к каждому уровню (или для поднабора уровней).

Во втором варианте осуществления ограничение maximum_tile_height (максимальная высота элемента мозаичного изображения) применяется к каждому уровню (или для поднабора уровней).

В третьем варианте осуществления ограничение minimum_tile_width (минимальная ширина элемента мозаичного изображения) применяется к каждому уровню (или для поднабора уровней).

В четвертом варианте осуществления ограничение minimum_tile_height (минимальная высота элемента мозаичного изображения) применяется к каждому уровню (или для поднабора уровней).

В пятом варианте осуществления ограничение maximum_tile_width и maximum_tile_height применяется к каждому уровню (или для поднабора уровней).

В шестом варианте осуществления ограничение minimum_tile_width и minimum_tile_height применяется к каждому уровню (или для поднабора уровней).

В седьмом варианте осуществления ограничение максимума tile_width*tile_height применяется к каждому уровню (или для поднабора уровней).

В восьмом варианте осуществления ограничение минимума tile_width*tile_height применяется к каждому уровню (или для поднабора уровней).

В девятом варианте осуществления ограничение максимума tile_width*tile_height и минимума tile_width*tile_height применяется к каждому уровню (или для поднабора уровней).

В десятом варианте осуществления ограничение максимума tile_width+tile_height применяется к каждому уровню (или для поднабора уровней).

В одиннадцатом варианте осуществления ограничение минимума tile_width+tile_height применяется к каждому уровню (или для поднабора уровней).

В двенадцатом варианте осуществления ограничение максимума tile_width+tile_height и минимума tile_width+tile_height применяется к каждому уровню (или для поднабора уровней).

Фигура 3 показывает видеокодер 300. Видеокодер содержит модуль 310 разделения и модуль 320 кодирования. Модуль 310 разделения принимает видеопоследовательность и разделяет изображения видеопоследовательности на элементы мозаичного изображения. Элементы мозаичного изображения кодируются модулем 320 кодирования, и закодированные модули выводятся из кодера 300.

Фигура 4 показывает видеодекодер 400. Видеодекодер 400 содержит модуль 410 декодирования единиц кодирования и деблокирующий фильтр 420. Модуль 410 декодирования единиц кодирования принимает вывод кодера, который может быть передан из кодера декодеру с помощью любой сети связи. Модуль 410 декодирования единиц кодирования декодирует единицы кодирования каждого изображения видеопоследовательности как часть процесса декодирования видео. Декодированные единицы кодирования пропускаются через деблокирующий фильтр 420, который сглаживает края единиц кодирования, удаляя любые артефакты кодирования, которые могли быть введены во время процесса кодирования. Выводом деблокирующего фильтра является видеопоследовательность, которая может быть выведена на устройство отображения.

Фигура 5 иллюстрирует способ кодирования видеопоследовательности. Способ содержит разделение 510 видеопоследовательности на элементы мозаичного изображения. Элементы мозаичного изображения затем кодируются 520 с использованием основанной на блоках схемы кодирования. По меньшей мере одной размерностью элемента мозаичного изображения управляют, как описано в данном документе, чтобы способствовать оптимальному декодированию в декодере.

Фиг. 6 иллюстрирует способ декодирования видеопоследовательности. Способ содержит декодирование 610 единиц кодирования из закодированной видеопоследовательности. Способ дополнительно содержит применение 620 деблокирующего фильтра к единицам кодирования, чтобы сгладить любые артефакты кодирования. Декодер будет включать в себя средство для временного сохранения значений пикселей для граничных областей предшествующих элементов мозаичного изображения, таким образом, что они могут быть использованы для операции сглаживания на краях декодируемого в текущий момент элемента мозаичного изображения.

Способы и устройства, раскрытые в данном документе позволяют уменьшить объем внутрикристальной памяти, необходимый для буфера линий в видеодекодере. Это делает кодер менее дорогим и более легким для реализации.

Специалист в данной области техники поймет, что точный порядок и содержание действий, выполняемых в способе, описанном в данном документе, могут быть изменены в соответствии с требованиями конкретного набора параметров исполнения. Таким образом, порядок, в котором описаны и/или заявлены действия, не должен быть истолкован как строгое ограничение относительно порядка, в котором действия должны быть выполнены.

Кроме того, несмотря на то, что примеры были приведены в контексте конкретных стандартов кодирования видео, эти примеры не должны подразумеваться как ограничение стандартов кодирования видео, к которым могут быть применены раскрытые способ и устройство. Например, несмотря на то, что специфические примеры были приведены в контексте HEVC, принципы, раскрытые в данном документе, также могут быть применены к любой системе Н.264, другой системе кодирования видео и, конечно, любой системе кодирования видео, которая использует буфер линий.

ДОПОЛНЕНИЕ

Предоставлен видеокодер, выполненный с возможностью кодирования видеопоследовательности, причем видеокодер содержит: модуль разделения, выполненный с возможностью разделения видеопоследовательности на элементы мозаичного изображения, при этом размер элемента мозаичного изображения меньше, чем предварительно определенный максимальный размер элемента мозаичного изображения; и по меньшей мере один модуль кодирования, выполненный с возможностью кодирования элементов мозаичного изображения.

Кодер может быть выполнен с возможностью оптимизации кодирования для конкретного видеодекодера. Предварительно определенный максимальный размер элемента мозаичного изображения может быть определен таким образом, что деблокирующий фильтр в конкретном видеодекодере имеет достаточную буферную память для сохранения значений пикселей для граничного слоя элемента мозаичного изображения, имеющего максимальный размер элемента мозаичного изображения.

Максимальный размер элемента мозаичного изображения может зависеть от уровня качества кодирования.

Модуль разделения может быть дополнительно выполнен с возможностью определения ширины изображения видеопоследовательности и разделения видеопоследовательности на элементы мозаичного изображения, если ширина изображения превышает предварительно определенный максимальный размер элементов мозаичного изображения.

Размер элемента мозаичного изображения может быть больше, чем минимальный размер элемента мозаичного изображения.

Размер элемента мозаичного изображения может быть по меньшей мере одним из: высоты элемента мозаичного изображения, ширины элемента мозаичного изображения, площади элемента мозаичного изображения и периметра элемента мозаичного изображения.

Дополнительно предоставлен способ в видеокодере, причем способ содержит: разделение видеопоследовательности на элементы мозаичного изображения, при этом размер элемента мозаичного изображения меньше чем предварительно определенный максимальный размер элемента мозаичного изображения; и кодирование элементов мозаичного изображения.

Способ может дополнительно содержать оптимизацию кодирования для конкретного видеодекодера, посредством чего предварительно определенный максимальный размер элемента мозаичного изображения может быть определен таким образом, что деблокирующий фильтр в конкретном видеодекодере имеет достаточную буферную память для сохранения значений пикселей для граничного слоя элемента мозаичного изображения, имеющего максимальный размер элемента мозаичного изображения.

Дополнительно предоставлен видеодекодер, выполненный с возможностью декодирования закодированной видеопоследовательности, причем видеопоследовательность закодирована в элементах мозаичного изображения, причем видеодекодер содержит: модуль декодирования единиц кодирования, выполненный с возможностью декодирования единиц кодирования изображений в закодированной видеопоследовательности; и деблокирующий фильтр, выполненный с возможностью сглаживания границ между единицами кодирования, при этом деблокирующий фильтр содержит достаточную буферную память для сохранения значений пикселей для граничного слоя элемента мозаичного изображения.

Граничный слой элемента мозаичного изображения содержит множество пикселей, значения которых используются деблокирующим фильтром во время декодирования последующего элемента мозаичного изображения.

Видеодекодер может быть выполнен с возможностью приема закодированной видеопоследовательности, причем закодированная видеопоследовательность разделена на элементы мозаичного изображения и закодирована с использованием размера элемента мозаичного изображения, подходящего для видеодекодера.

Дополнительно предоставлен способ в видеодекодере, причем видеодекодер выполнен с возможностью декодирования закодированной видеопоследовательности, причем видеопоследовательность закодирована в элементах мозаичного изображения, причем способ содержит: декодирование единиц кодирования изображений в закодированной видеопоследовательности и сглаживание границ между единицами кодирования с использованием деблокирующего фильтра, при этом деблокирующий фильтр содержит достаточную буферную память для сохранения значений пикселей для граничного слоя элемента мозаичного изображения.

Дополнительно предоставлен считываемый компьютером носитель, переносящий инструкции, которые при исполнении компьютерной логикой побуждают упомянутую компьютерную логику выполнять любой из способов, определенных в данном документе.


РАЗМЕР ЭЛЕМЕНТА МОЗАИЧНОГО ИЗОБРАЖЕНИЯ ПРИ КОДИРОВАНИИ ВИДЕО
РАЗМЕР ЭЛЕМЕНТА МОЗАИЧНОГО ИЗОБРАЖЕНИЯ ПРИ КОДИРОВАНИИ ВИДЕО
РАЗМЕР ЭЛЕМЕНТА МОЗАИЧНОГО ИЗОБРАЖЕНИЯ ПРИ КОДИРОВАНИИ ВИДЕО
Источник поступления информации: Роспатент

Показаны записи 1-10 из 298.
27.01.2013
№216.012.2172

Способы и устройства в системе беспроводной связи

Изобретение относится к беспроводной связи, а именно к способам и устройствам автономных повторных передач HARQ. Техническим результатом является уменьшение числа требуемых повторных передач и уменьшение задержки предоставления сетевых услуг. Технический результат достигается тем, что способ...
Тип: Изобретение
Номер охранного документа: 0002474063
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.24f3

Способ и устройство в сети радиодоступа

Изобретение относится к беспроводной связи. Техническим результатом является возможность легкого объединения повторителей включения/выключения в сети радиодоступа и минимизированной сигнализации для выбора повторителя UE. Этого достигают с помощью решения, в котором RBS работают в режиме...
Тип: Изобретение
Номер охранного документа: 0002474961
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2cc7

Устройства и способы подстройки частоты в синтезаторе частот с множеством выходов

Изобретение относится к области связи и может использоваться для управления точными источниками частоты в сотовых телефонах или других устройствах связи. Достигаемый технический результат - генерация из одного опорного тактового сигнала, по меньшей мере, двух тактовых сигналов для отдельных...
Тип: Изобретение
Номер охранного документа: 0002476990
Дата охранного документа: 27.02.2013
10.05.2013
№216.012.3f35

Идентификация процедуры ранжирования улучшенного беспроводного терминала

Изобретение относится к системам связи. Технический результат заключается в обеспечении согласования назначения ресурсов и возможностей терминала. Сеть связи содержит базовую станцию и беспроводной терминал, который взаимодействует по радиоинтерфейсу с базовой станцией. Базовая станция...
Тип: Изобретение
Номер охранного документа: 0002481748
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4291

Способ и устройство управления ресурсами передачи в процессах автоматических запросов на повторную передачу

Изобретение относится к системам связи. Технический результат заключается в оптимизации пропускной способности линии связи. Способ управления ресурсами передачи для передачи и повторной передачи пакетов множества процессов автоматических запросов на повторную передачу содержит выделение, для...
Тип: Изобретение
Номер охранного документа: 0002482611
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4a3a

Способ и устройство для последовательного вычитания помех с помощью обработки матрицы корня ковариации

Изобретение относится к технике беспроводной связи и может быть использовано для обработки сигналов связи, использующих последовательное вычитание помех. Способ обработки составного сигнала связи, содержащего два или более одновременно принятых представляющих интерес сигнала, содержит...
Тип: Изобретение
Номер охранного документа: 0002484582
Дата охранного документа: 10.06.2013
20.09.2013
№216.012.6d65

Повышение надежности протокола гибридного автоматического запроса на повторную передачу данных

Заявленное изобретение относится к протоколам передачи данных для передачи данных по совместно используемому нисходящему каналу связи. Технический результат состоит в уменьшении вероятности обнаружения ложного АСК, когда никакой сигнал ACK/NACK не передается терминалом пользователя. Для этого...
Тип: Изобретение
Номер охранного документа: 0002493656
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d67

Способ и устройство для осуществления связи по радиоканалу

Изобретение относится к способам и устройствам связи в сети связи, в частности, предназначенным для передачи/приема данных по радиоканалу. Техническим результатом является увеличение количества различных преамбул, подлежащих использованию в процессе произвольного доступа. Указанный технический...
Тип: Изобретение
Номер охранного документа: 0002493658
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.776a

Способ и устройство достоверного определения весовых коэффициентов в системе cdma с помехами

Изобретение относится к системам множественного доступа с кодовым разделением (CDMA) и к гибкому масштабированию при обработке сигналов связи и предназначено для повышения точности гибкого масштабирования за счет использования информации о распределении по времени помех. Принятый представляющий...
Тип: Изобретение
Номер охранного документа: 0002496230
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.779a

Способ связи между платформами

Изобретение относится к области технологий сетевого доступа (NAT), a именно к способу, который позволяет функциональному компоненту, расположенному на первой платформе сетевого доступа, связываться с функциональным компонентом, расположенным на второй платформе сетевого доступа. Технический...
Тип: Изобретение
Номер охранного документа: 0002496278
Дата охранного документа: 20.10.2013
Показаны записи 1-10 из 270.
27.01.2013
№216.012.2172

Способы и устройства в системе беспроводной связи

Изобретение относится к беспроводной связи, а именно к способам и устройствам автономных повторных передач HARQ. Техническим результатом является уменьшение числа требуемых повторных передач и уменьшение задержки предоставления сетевых услуг. Технический результат достигается тем, что способ...
Тип: Изобретение
Номер охранного документа: 0002474063
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.24f3

Способ и устройство в сети радиодоступа

Изобретение относится к беспроводной связи. Техническим результатом является возможность легкого объединения повторителей включения/выключения в сети радиодоступа и минимизированной сигнализации для выбора повторителя UE. Этого достигают с помощью решения, в котором RBS работают в режиме...
Тип: Изобретение
Номер охранного документа: 0002474961
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2cc7

Устройства и способы подстройки частоты в синтезаторе частот с множеством выходов

Изобретение относится к области связи и может использоваться для управления точными источниками частоты в сотовых телефонах или других устройствах связи. Достигаемый технический результат - генерация из одного опорного тактового сигнала, по меньшей мере, двух тактовых сигналов для отдельных...
Тип: Изобретение
Номер охранного документа: 0002476990
Дата охранного документа: 27.02.2013
10.05.2013
№216.012.3f35

Идентификация процедуры ранжирования улучшенного беспроводного терминала

Изобретение относится к системам связи. Технический результат заключается в обеспечении согласования назначения ресурсов и возможностей терминала. Сеть связи содержит базовую станцию и беспроводной терминал, который взаимодействует по радиоинтерфейсу с базовой станцией. Базовая станция...
Тип: Изобретение
Номер охранного документа: 0002481748
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4291

Способ и устройство управления ресурсами передачи в процессах автоматических запросов на повторную передачу

Изобретение относится к системам связи. Технический результат заключается в оптимизации пропускной способности линии связи. Способ управления ресурсами передачи для передачи и повторной передачи пакетов множества процессов автоматических запросов на повторную передачу содержит выделение, для...
Тип: Изобретение
Номер охранного документа: 0002482611
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.45d2

Способ и устройство передач по нисходящей линии связи с линейным предварительным кодированием для уменьшения влияния изменений помех во времени

Изобретение относится к технике беспроводной связи и может быть использовано для уменьшения влияния изменения помех во времени. Сетевые базовые станции уменьшают временные изменения в помехе, воспринимаемой мобильными станциями, действующими внутри сети (60), замедляя скорость, с которой они...
Тип: Изобретение
Номер охранного документа: 0002483451
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4a3a

Способ и устройство для последовательного вычитания помех с помощью обработки матрицы корня ковариации

Изобретение относится к технике беспроводной связи и может быть использовано для обработки сигналов связи, использующих последовательное вычитание помех. Способ обработки составного сигнала связи, содержащего два или более одновременно принятых представляющих интерес сигнала, содержит...
Тип: Изобретение
Номер охранного документа: 0002484582
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5b39

Способы и устройства для уведомления о чрезвычайных ситуациях

Изобретение относится к области радиосвязи. Техническим результатом является достижение сообщения о чрезвычайной ситуации пользовательского оборудования эффективным и надежным образом. Упомянутый технический результат достигается тем, что первое устройство связи принимает уведомление о...
Тип: Изобретение
Номер охранного документа: 0002488974
Дата охранного документа: 27.07.2013
20.09.2013
№216.012.6d65

Повышение надежности протокола гибридного автоматического запроса на повторную передачу данных

Заявленное изобретение относится к протоколам передачи данных для передачи данных по совместно используемому нисходящему каналу связи. Технический результат состоит в уменьшении вероятности обнаружения ложного АСК, когда никакой сигнал ACK/NACK не передается терминалом пользователя. Для этого...
Тип: Изобретение
Номер охранного документа: 0002493656
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d67

Способ и устройство для осуществления связи по радиоканалу

Изобретение относится к способам и устройствам связи в сети связи, в частности, предназначенным для передачи/приема данных по радиоканалу. Техническим результатом является увеличение количества различных преамбул, подлежащих использованию в процессе произвольного доступа. Указанный технический...
Тип: Изобретение
Номер охранного документа: 0002493658
Дата охранного документа: 20.09.2013
+ добавить свой РИД