×
12.01.2017
217.015.62ef

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ НИКЕЛЕВЫХ КОНЦЕНТРАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при температуре до 100°С. Шихту готовят из смеси сульфидного никелевого сырья и сульфидного медного концентрата и хлорида натрия при массовом соотношении смеси сульфидного никелевого сырья и сульфидного медного концентрата к хлориду натрия 1:0,5-2,0 и массовом соотношении Cu/Ni в шихте больше 3. Выщелачивание ведут с переводом в раствор водорастворимых соединений никеля и меди. Обеспечивается максимально полный перевод никеля в водорастворимую форму для выщелачивания его водой, а также сокращение выделения диоксида серы в атмосферу. 2 ил., 4 пр.

Изобретение относится к металлургии цветных металлов, в частности никеля, и может быть использовано для переработки сульфидного никелевого сырья, в том числе руд и концентратов, не содержащих в качестве примесей медь с получением чистых металлов или их солей.

Известен способ переработки сульфидных медных концентратов (предложенный для концентратов месторождения Эрдэнэт), включающий обжиг концентрата с NaCl при температурах 450-500°C, двухстадийное выщелачивание огарка серной кислотой и экстракцию-реэкстракцию меди с последующей электроэкстракцией, что позволяет достигать извлечения меди 95% (Медведев А.С., Со Ту, Хамхаш А., Гостеева Н.В., Птицын A.M. Вариант переработки сульфидного медного концентрата комбинированным методом, Цветные металлы, №1, 2010 г.).

Известен способ переработки сульфидных медных концентратов (предложенный для концентратов месторождения Удокан), включающий обжиг концентрата с KCl при температуре 450°C, выщелачивание продукта обжига водой и двухстадийное выщелачивание образующегося гидратного кека серной кислотой с получением в качестве конечных продуктов медного купороса и калийного удобрения (Медведев, А.С., Со Ту, Птицын A.M. Комбинированная технология переработки удоканского сульфидного медного концентрата // Известия вузов. Цветная металлургия. - 2012. - №2. - С. 17-20.).

Недостатком двух вышеуказанных способов является то, что они применимы только к медным концентратам.

Известен способ переработки сульфидных никелевых файнштейнов, включающий двухстадийный окислительный обжиг при температурах 900-1200°C с промежуточным сульфат-хлорирующим обжигом при температуре 750-800°C при подшихтовке небольшого количества сильвинита, а для образования водорастворимых хлоридов и сульфатов меди и кобальта после первого окислительного обжига в огарке оставляют 1-3% серы. При этом никель не сульфатизируется и не хлорируется. Огарок сульфат-хлорирующего обжига направляют на выщелачивание сначала водой, а затем слабым раствором серной кислоты, в результате чего в раствор извлекается до 80% меди и до 30% кобальта, а никель остается в кеке, который направляют на вторую стадию окислительного обжига (Комплексная переработка медно-никелевого сырья, А.В. Ванюков, Н.И. Уткин.: Учебник для вузов. Челябинск, Металлургия, Челябинское отделение, 1988, 432 с.).

Недостатком способа является узкая область применения (только для никелевых файнштейнов) и его многостадийность.

Наиболее близким по технической сущности является способ переработки никелевого сырья (Патент RU 2533294 С1, опубликован 20.11.2014, бюл. №32), включающий смешивание исходного сырья с хлоридом натрия NaCl в соотношении 1:1-5-1:2 по массе, обжиг при температурах 350-400°C в течение 1,5-2 часа в трубчатой или муфельной печи при доступе кислорода воздуха, выщелачивание полученного огарка водой с переходом в раствор меди, кобальта и никеля.

Недостатком прототипа является то, что он подходит только для высокомедистых никелевых концентратов. При использовании указанного способа для переработки никелевых концентратов, не содержащих в качестве примеси медь (или содержащих медь в незначительных количествах - до 0,5%), извлечение никеля в воду из огарка не превышает 20%.

Технический результат предлагаемого способа направлен на упрощение известных технологий и создание экологически эффективной технологии переработки сульфидного никелевого концентрата с низким содержанием меди, позволяющей максимально полно переводить никель в водорастворимую форму и выщелачивать его водой, исключив или существенно сократив при этом выделение диоксида серы в атмосферу. При этом извлечение никеля в воду не менее 80%, меди - не менее 90%.

Технический результат достигается тем, что в способе переработки сульфидного никелевого сырья на обжиг с хлоридом натрия направляют не сульфидный никелевый концентрат (или другое сырье), а смесь сульфидных никелевого и медного концентратов, которую также предварительно тщательно смешивают с хлоридом натрия в соотношении 1:0,5÷1:2 по массе (в зависимости от состава никелевого концентрата), а обжиг также ведут при температурах 350-400°C в течение 1,5-2 часа в трубчатой или муфельной печи при хорошем доступе воздуха. Выщелачивание огарка ведут водой при температурах до 100°C.

Способ осуществляется следующим образом. Сульфидный никелевый концентрат перемешивали с хлоридом натрия и сульфидным медным концентратом, меняя массовое соотношение меди к никелю. Шихту загружали в трубчатую печь и обжигали в присутствии кислорода воздуха. Полученный огарок подвергли водному выщелачиванию.

На фигуре 1 представлена зависимость извлечения никеля в воду при выщелачивании огарков различных концентратов (температура выщелачивания 90°C, продолжительность 1,5 ч, Т:Ж=1:7) от температуры обжига (продолжительность 1,5 ч, расход NaCl - 80% от массы концентрата). Видно, что для концентрата с высоким содержанием меди (массовое соотношение меди к никелю ~1:2,2) удается достичь извлечения никеля из спека ~90% при оптимальной температуре обжига. Для низкомедистого концентрата (массовое соотношение меди к никелю ~1:31) таких высоких извлечений достичь не удается.

На фигуре 2 представлена зависимость извлечения никеля в воду при выщелачивании огарков, полученных при обжиге концентратов с различным содержанием никеля и меди (температура выщелачивания 90°C, продолжительность выщелачивания 1,5 ч, Т:Ж=1:7, продолжительность обжига 1,5 ч, температура обжига 400°C, расход NaCl - 80% от массы концентрата) и извлечения никеля при водном выщелачивании огарка от соотношения Cu/Ni в обжигаемой смеси, которую получали путем добавления к Концентрату 3 (см. фиг. 1) различного количества сульфидного медного концентрата. При обжиге чистого Концентрата 3 с хлоридом натрия и незначительных добавках сульфидного медного концентрата извлечение никеля не превышает 20%. При массовом соотношении Cu/Ni от 0,5 до 2,5 извлечение никеля из огарка находится в пределах 40-55%, при массовом соотношении Cu/Ni больше 3 извлечение никеля в воду превышает 80%.

Таким образом, показана возможность переработки сульфидного никелевого концентрата с низким содержанием меди при помощи низкотемпературного обжига с хлоридом натрия путем подшихтовки в обжигаемую смесь сульфидного медного концентрата.

Следует отметить, что извлечение меди из огарка в воду также высокое - на уровне 90-95%. Кроме того, при корректировке pH полученного раствора до 6-7 никель остается в растворе, а медь остается в кеке. Таким образом можно разделять медь и никель.

Пример 1. В качестве исходного сырья использован сульфидный никелевый концентрат следующего состава, масс. %: Ni - 10,11; Cu - 0,32; Co - 0,34; Fe - 30,13; S - 13,91. Первоначально навеску шихты, состоящую из сульфидного никелевого концентрата и хлорида натрия, смешанных в массовом соотношении 1:0,8 соответственно, подвергли низкотемпературному обжигу при температуре 400°C в присутствии кислорода воздуха в течение 1,5 часа. Полученный огарок выщелачивали водой 1,5 часа при температуре 90°C и Т:Ж=1:7. Извлечение никеля в раствор составило 15%. Вышеуказанных условий недостаточно для образования водорастворимого сульфата (и, возможно, хлорида) никеля при условиях обжига.

Пример 2. В качестве исходного сырья использован сульфидный никелевый концентрат следующего состава, масс. %: Ni - 10,11; Cu - 0,32; Со - 0,34; Fe - 30,13; S - 13,91 и сульфидный медный концентрат следующего состава, масс. %: Cu - 23,78; Fe - 6,61; S - 7,22. Первоначально навеску шихты, состоящую из сульфидного никелевого концентрата, сульфидного медного концентрата и хлорида натрия, смешанных в массовом соотношении 0,8:0,2:0,8 соответственно (то есть сохранен расход NaCl, равный 80% от массы смеси концентратов, а соотношение между никелевым и медным концентратом равно 4:1, что позволило добиться массового соотношения Cu:Ni в смеси - 0,62), подвергли низкотемпературному обжигу при температуре 400°C в присутствии кислорода воздуха в течение 1,5 часа. Полученный огарок выщелачивали водой 1,5 часа при температуре 90°C и Т:Ж=1:7. Извлечение никеля в раствор составило 40%, что показывает катализующее влияние медного концентрата на образование водорастворимых соединений никеля при обжиге с хлоридом натрия. Извлечение меди при водном выщелачивании огарка составило 92%.

Пример 3. В качестве исходного сырья использован сульфидный никелевый концентрат следующего состава, масс. %: Ni - 10,11; Cu - 0,32; Co - 0,34; Fe - 30,13; S - 13,91 и сульфидный медный концентрат следующего состава, масс. %: Cu - 23,78; Fe - 6,61; S - 7,22. Первоначально навеску шихты, состоящую из сульфидного никелевого концентрата, сульфидного медного концентрата и хлорида натрия, смешанных в массовом соотношении 2:3:4 соответственно (то есть сохранен расход NaCl, равный 80% от массы смеси концентратов, а соотношение между никелевым и медным концентратом равно 2:3, что позволило добиться массового соотношения Cu:Ni в смеси - 3,56), подвергли низкотемпературному обжигу при температуре 400°C в присутствии кислорода воздуха в течение 1,5 часа. Полученный огарок выщелачивали водой 1,5 часа при температуре 90°C и Т:Ж=1:7. Извлечение никеля в раствор составило 85%, извлечение меди при водном выщелачивании огарка составило 94%, что показывает возможность переработки низкомедистых сульфидных никелевых концентратов совместно с медными указанным способом.

Пример 4. В качестве исходного сырья использован сульфидный никелевый концентрат следующего состава, масс. %: Ni - 10,11; Cu - 0,32; Со - 0,34; Fe - 30,13; S - 13,91 и сульфидный медный концентрат следующего состава, масс. %: Cu - 23,78; Fe - 6,61; S - 7,22. Первоначально навеску шихты, состоящую из сульфидного никелевого концентрата, сульфидного медного концентрата и хлорида натрия, смешанных в массовом соотношении 1:4:4 соответственно (то есть сохранен расход NaCl, равный 80% от массы смеси концентратов, а соотношение между никелевым и медным концентратом равно 1:4, что позволило добиться массового соотношения Cu:Ni в смеси - 9,44), подвергли низкотемпературному обжигу при температуре 400°C в присутствии кислорода воздуха в течение 1,5 часа. Полученный огарок выщелачивали водой 1,5 часа при температуре 90°C и Т:Ж=1:7. Извлечение никеля в раствор составило 81%, извлечение меди при водном выщелачивании огарка составило 94%. Таким образом, показано, что существенное увеличение массового соотношения Cu:Ni не приводит к приросту извлечения никеля, которое остается на уровне 80-85%.

Способ переработки сульфидного никелевого сырья, включающий обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при температуре до 100°С, отличающийся тем, что шихту готовят из смеси сульфидного никелевого сырья и сульфидного медного концентрата и хлорида натрия при массовом соотношении смеси сульфидного никелевого сырья и сульфидного медного концентрата к хлориду натрия 1:0,5-2,0 и массовом соотношении Cu/Ni в шихте больше 3, при этом выщелачивание ведут с переводом в раствор водорастворимых соединений никеля и меди.
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ НИКЕЛЕВЫХ КОНЦЕНТРАТОВ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 331.
10.08.2016
№216.015.54e5

Способ определения термостойкости углей

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии....
Тип: Изобретение
Номер охранного документа: 0002593441
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a6

Способ сорбционного извлечения селена, теллура и мышьяка из водных растворов.

Изобретение относится к области гидрометаллургии, а именно к способу сорбционного извлечения селена, теллура и мышьяка из растворов. Сущность способа заключается во введении растворимых соединений индия в раствор извлекаемых элементов перед сорбцией. Количество соединений индия должно превышать...
Тип: Изобретение
Номер охранного документа: 0002590806
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dcc

Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к способу получения высокодисперсных порошков титаната диспрозия для поглощения нейтронов и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002590887
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6d89

Нанокомпозиционный электроконтактный материал и способ его получения

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения....
Тип: Изобретение
Номер охранного документа: 0002597204
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7009

Способ винтовой прокатки полых заготовок с дном

Изобретение относится к области прокатки из заготовок сплошного сечения деталей с дном. Способ включает следующие операции: отделение мерных штучных заготовок, зацентровку их по торцу, нагрев, подачу во вводной желоб стана винтовой прокатки, перемещение по желобу заталкивателем до касания...
Тип: Изобретение
Номер охранного документа: 0002596519
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.707c

Материал на основе объемных металлических стекол на основе циркония и способ его получения в условиях низкого вакуума

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления...
Тип: Изобретение
Номер охранного документа: 0002596696
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7678

Способ создания тонких слоев оксидов ni и nb с дырочной проводимостью для изготовления элементов сверхбольших интегральных схем

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования. Способ создания тонких слоев оксидов Ni и Nb с дырочной проводимостью для...
Тип: Изобретение
Номер охранного документа: 0002598698
Дата охранного документа: 27.09.2016
Показаны записи 31-40 из 187.
10.08.2016
№216.015.54e5

Способ определения термостойкости углей

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии....
Тип: Изобретение
Номер охранного документа: 0002593441
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55b2

Способ определения пористости металлоизделий

Изобретение относится к области обработки металлов давлением, а именно к определению пористости металлоизделия, полученного обработкой давлением литого изделия, и может быть использовано для определения влияния обработки давлением на пористость получаемого металлоизделия. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002593525
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a6

Способ сорбционного извлечения селена, теллура и мышьяка из водных растворов.

Изобретение относится к области гидрометаллургии, а именно к способу сорбционного извлечения селена, теллура и мышьяка из растворов. Сущность способа заключается во введении растворимых соединений индия в раствор извлекаемых элементов перед сорбцией. Количество соединений индия должно превышать...
Тип: Изобретение
Номер охранного документа: 0002590806
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5dcc

Способ получения порошка титаната диспрозия для поглощающих элементов ядерного реактора

Изобретение относится к способу получения высокодисперсных порошков титаната диспрозия для поглощения нейтронов и может быть использовано в стержнях регулирования ядерных реакторов. Способ включает получение порошка титаната диспрозия путем механической активации смеси компонентов - диоксида...
Тип: Изобретение
Номер охранного документа: 0002590887
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6d89

Нанокомпозиционный электроконтактный материал и способ его получения

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения....
Тип: Изобретение
Номер охранного документа: 0002597204
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7009

Способ винтовой прокатки полых заготовок с дном

Изобретение относится к области прокатки из заготовок сплошного сечения деталей с дном. Способ включает следующие операции: отделение мерных штучных заготовок, зацентровку их по торцу, нагрев, подачу во вводной желоб стана винтовой прокатки, перемещение по желобу заталкивателем до касания...
Тип: Изобретение
Номер охранного документа: 0002596519
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.707c

Материал на основе объемных металлических стекол на основе циркония и способ его получения в условиях низкого вакуума

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности. Сплав на основе циркония для изготовления...
Тип: Изобретение
Номер охранного документа: 0002596696
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7678

Способ создания тонких слоев оксидов ni и nb с дырочной проводимостью для изготовления элементов сверхбольших интегральных схем

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования. Способ создания тонких слоев оксидов Ni и Nb с дырочной проводимостью для...
Тип: Изобретение
Номер охранного документа: 0002598698
Дата охранного документа: 27.09.2016
+ добавить свой РИД