×
12.01.2017
217.015.623e

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИТ АНОДИРОВАНИЯ И МЕДНЕНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано перед нанесением медных покрытий на изделия из алюминия и его сплавов. Электролит содержит ортофосфорную кислоту и сульфат меди, при этом он дополнительно содержит серную кислоту и бифторид аммония при следующих соотношениях компонентов, г/л: HPO - 150-200; HSO - 140-150; CuSO·5HO - 110-120; NHF·HF - 0,1-0,2 и воду - остальное. Технический результат: получение высококачественных медных гальванопокрытий на деталях сложного профиля из любых типов алюминиевых сплавов. 2 пр.

Изобретение относится к электрохимическому способу нанесения покрытий на изделия из алюминия и его сплавов.

Для нанесения качественных медных гальванических покрытий на алюминий и его сплавы часто используется операция предварительного анодирования в смеси серной и ортофосфорной кислот (15% (об.) H2SO4 и 15% (об.) Н3РО4), после чего наносят слой меди из стандартного сернокислого электролита меднения [1]. Такая технология хотя и эффективна, но требует дополнительных материальных затрат.

Близость составов и режимов работы электролитов анодирования и меднения дает возможность проводить эти операции в одной ванне при простой смене полярности электродов. При таком способе достигается значительная экономия химикатов, воды и оборудования.

Известен способ анодировать и осаждать медь в растворе следующего состава, г/л [2]:

CuSO45H2O 210
H2SO4 70
Вода остальное

Анодирование проводилось при анодной плотности тока ja=1,5-2,5 А/дм2 в течение 3 минут и температуре 30-35°С, после чего полярность тока переключалась и в течение 2-3 минут анодированная поверхность покрывалась медью при катодной плотности тока 4 А/дм2. Недостаток этой ванны меднения - плохая рассеивающая способность и образование шероховатых покрытий. К тому же качественные осадки меди, имеющие высокую адгезию с поверхностью, могут быть получены только на сплавах Д 16 AT.

Наиболее близким по составу к предлагаемому является электролит следующего состава (массовая доля, %) [3]:

Н3РО4 15-25
Соль осаждаемого металла (Zn, Cd, Cu) 15-25
Азотсодержащий полиалкилен (ПЭПА) 0,01-1
Вода остальное

Однако предлагаемый состав электролита подходит, прежде всего, для сплава марки Д16, включающего в своем составе до 5% меди. Для других же сплавов процесс анодирования будет протекать при более высоком напряжении [1]. Это повлечет за собой значительные энергетические затраты и, что крайне важно, к непрокрытию медью по всей поверхности деталей, особенно сложнопрофилированных. К тому же, использование полиэтиленполиамина (ПЭПА) крайне нежелательно вследствие его высокой токсичности.

Таким образом, универсального электролита анодирования и меднения для всех алюминиевых сплавов не существует, так как известные технологии подходят в основном только для сплавов Д-16 и в основном для деталей несложного профиля.

Задачей предлагаемого изобретения является разработка экономичного универсального электролита совмещенного анодирования и меднения для получения качественных медных гальванопокрытий на деталях сложного профиля из любых типов алюминиевых сплавов.

Технический результат - получение высококачественных медных гальванопокрытий, повышение качества металлопокрытия для широкого диапозона обрабатываемых сплавов.

Технический результат достигается тем, что в состав электролита, состоящий из ортофосфорной кислоты и сульфата меди, дополнительно вводится серная кислота и бифторид аммония при следующем соотношении компонентов (г/л):

Н3РО4 150-200
H2SO4 140-150
Сульфат меди 110-120
Бифторид аммония 0,1-0,2
Вода остальное

Выбор компонентов электролита обусловлен следующим. Предпосылкой предлагаемого изобретения является то, что универсальным электролитом анодирования для всех типов алюминиевых сплавов является электролит, содержащий 15% (об.) H2SO4 и 15% (об.) Н3РО4. Однако при введении в его состав CuSO4·5Н2О в количестве 200-250 г/л, необходимом для меднения, наблюдалось выпадение осадка сульфата меди. Это обусловлено снижением его растворимости при высоких (15% (об.)) концентрациях H2SO4 [4]. При рабочих концентрациях кислот содержание CuSO4·5Н2О составляет всего 50 г/л. В этом случае рабочие плотности тока составят всего 0,2-0,5 А/дм2, что приводит к значительному увеличению времени нанесения медного покрытия.

В отсутствии ортофосфорной кислоты в составе электролита адгезия покрытия с основой имеет очень низкую величину, а в отсутствии серной - достигается очень высокое напряжение на ванне (выше 31 В).

Исходя из вышесказанного выбиралось соотношение концентраций компонентов (серной и ортофосфорной кислот) электролита. Удовлетворительная адгезия покрытия с основой получалась в том случае, когда содержание ортофосфорной кислоты в электролите было не менее 150 г/л, а пониженное напряжение на ванне при содержании серной кислоты не менее 100 г/л.

Известен электролит для анодирования алюминия и его сплавов, имеющий следующий состав: 150 г/л H2SO4+150 г/л Н3РО4 [2]. При использовании такого электролита в качестве базового и введении в его состав сульфата меди в количестве 100-120 г/л наблюдается полное прокрытие медью поверхности анодированной детали.

В работах [5, 6] было указано, что положительный эффект при анодировании и нанесении медного покрытия достигается при введении в электролит добавки фторсодержащих неорганических веществ (в частности, бифторида аммония). Введение таких добавок в электролит анодирования обусловлено тем, что при последующем нанесении медного покрытия в ванне сернокислого меднения осадок меди получается мелкокристаллическим плотноупакованным. Это в значительной мере улучшает поверхностные характеристики медного покрытия. Введение таких добавок в электролит меднения приводит к повышению рассеивающей способности электролита примерно в 2 раза. Этот факт особенно важен при нанесении медного покрытия на сложнопрофилированные детали. При использовании указанных концентраций (2-15 г /л) наблюдалось отслоение покрытия, связанное с разрушением оксидной пленки на поверхности алюминиевой детали. При снижении концентрации бифторида аммония до 0,1-0,2 г/л в электролите адгезия покрытия была хорошей даже при отжиге при температуре 200°С.

Учитывая вышесказанное, искомый состав предлагаемого электролита будет следующим: 150 г/л H2SO4+150 г/л H3PO4+110-120 г/л CuSO4·5H2O+0,1-0,2 г/л NH4F·HF, вода остальное (до 1 литра). Изменение концентраций компонентов в растворе приводит к ухудшению качества осадка.

При определении режимов работы предлагаемого электролита было установлено, что оптимальной рабочей плотностью тока является 0,9-1,1 А/дм2. При увеличении плотности тока свыше указанных интервалов наблюдалось образование порошкообразного некачественного медного покрытия. Время анодирования составляет 4-5 минут, а время меднения определяется необходимой толщиной медного покрытия.

Способ осуществляют следующим образом. Покрытию подвергали сложнопрофилированные детали, изготовленные из алюминиевых сплавов следующих марок АМц, АД0, АД1, АД31, АК4, АК9 ч, АЛ2. Предварительно детали обезжиривали в растворе NaOH концентрацией 50-70 г/л в течение 2-3 минут, осветляли в растворе HNO3:HF=3:1. Далее детали подвергали анодированию и меднению в предложенном электролите. Толщина медного покрытия составляет 9 мкм.

Примеры

Пример 1. Деталь из сплава марки АД1 анодидировалась в электролите состава 150 г/л H2SO4+150 г/л Н3РО4+120 г/л CuSO4·5Н2О, вода - остальное при комнатной температуре и анодной плотности тока 1А/дм2 в течение 4-5 минут. Напряжение на ванне при этом составило 15-18 В. Далее, переключая полярности электродов, наносилось медное покрытие при катодной плотности тока 1 А/дм2. При визуальном осмотре деталь была покрыта по всей поверхности, непрокрытий не было. Однако структура покрытия была крупнокристаллической, что приводит к ухудшению поверхностных характеристик медного покрытия (в частности его электропроводности).

Пример 2. Деталь из сплава марки АД1 анодидировалась в электролите состава 150 г/л H2SO4+150 г/л Н3РО4+120 г/л CuSO4·5H2O+0,2 г/л NH4F·HF, вода-остальное при комнатной температуре и анодной плотности тока 1 А/дм2 в течение 4-5 минут. Напряжение на ванне при этом составило 10-13 В. Далее, переключая полярности электродов, наносилось медное покрытие при катодной плотности тока 1 А/дм2. При визуальном осмотре деталь было покрыта по всей поверхности. Структура покрытия была мелкокристаллической.

После покрытия детали нагревали в вакуумной печи при температуре 200-230°С в течение 1 часа (стандартный прием). Прочность сцепления покрытия с основой определялась по методу сеток, методом крацевания медными щетками и по контролю отслоений гальванопокрытий после отжига. Опытные образцы успешно прошли все испытания. Отслоения покрытий не наблюдалось.

Источники информации

1. Девяткина Т.И., Спасская М.М., Рогожин В.В., Москвичев А.Н., Михаленко М.Г. Анодное оксидирование алюминия и его сплавов для получения качественных гальванических покрытий // Вестник Нижегородского государственного университета им. Н.И. Лобачевского. - 2013. - №.4 часть 1. - С. 109-114.

2. Климаков В.Н., Каушпедас З.П., Тиминскас А.С. Технология подготовки поверхности и нанесения электрохимических покрытий на алюминий и его сплавы. Обзор. М.: ЦНИИНТИКПК, 1989 г. - С. 24.

3. Герасименко А.А. Водный раствор для анодирования алюминиевых сплавов и последующего нанесения покрытий // А.с. 555173 C25D 11/06, C25D 3/22, C25D 3/26, C25D 3/38 опубл. 25.04.1977.

4. Грилихес С.Я., Тихонов К.И. Электролитические и химические покрытия. Теория и практика. Л.: Химия, 1990 г. - С.81.

5. Девяткина Т.И., Яровая Е.И., Рогожин В.В., Маркова Т.В., Михаленко М.Г. Анодное оксидирование сложнопрофильных деталей из алюминия и его сплавов с последующим электроосаждением медных покрытий // Журнал прикладной химии. - 2014. - т. 87. - №1. - С. 58-65.

6. Девяткина Т.И., Маркова Т.В., Рогожин В.В., Михаленко М.Г. Особенности гальванического меднения алюминиевых сплавов // Труды Нижегородского государственного технического университета им. Р.Е. Алексеева. - 2013. - №2 (99). - С. 237-244.

Электролит анодирования и меднения алюминия и его сплавов перед нанесением медных гальванопокрытий, содержащий ортофосфорную кислоту и сульфат меди, отличающийся тем, что он дополнительно содержит серную кислоту и бифторид аммония при следующих соотношениях компонентов:
Источник поступления информации: Роспатент

Показаны записи 21-21 из 21.
25.08.2017
№217.015.c061

Способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных аккумуляторов

Изобретение относится к области изготовления щелочных аккумуляторов с металловойлочными оксидно-никелевыми электродами. Предложенный способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных источников тока включает подготовку поверхности пористого полимерного материала...
Тип: Изобретение
Номер охранного документа: 0002616584
Дата охранного документа: 18.04.2017
Показаны записи 21-29 из 29.
25.08.2017
№217.015.c061

Способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных аккумуляторов

Изобретение относится к области изготовления щелочных аккумуляторов с металловойлочными оксидно-никелевыми электродами. Предложенный способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных источников тока включает подготовку поверхности пористого полимерного материала...
Тип: Изобретение
Номер охранного документа: 0002616584
Дата охранного документа: 18.04.2017
21.07.2018
№218.016.72ef

Способ нанесения никелевых покрытий на алюминиевые сплавы

Изобретение относится к области гальванотехники и может быть использовано для внешней отделки изделий и деталей машин аэробусов, автомобилей, устройств морской и авиационной техники. Способ включает анодирование в водном растворе, содержащем серную и ортофосфорную кислоты с добавлением...
Тип: Изобретение
Номер охранного документа: 0002661695
Дата охранного документа: 19.07.2018
16.10.2018
№218.016.92bf

Способ малоинвазивной внутриутробной баллонной окклюзии трахеи у плода с диафрагмальной грыжей при летальной гипоплазии легких

Изобретение относится к медицине, а именно к хирургии и акушерству. Осуществляют введение в трахею плода баллона на проводнике под контролем УЗИ. При этом в ротовую полость плода вводят операционный тубус фетоскопа с пирамидальным обтуратором фирмы «Storz». Затем удаляют обтуратор и под...
Тип: Изобретение
Номер охранного документа: 0002669727
Дата охранного документа: 15.10.2018
13.01.2019
№219.016.aeeb

Способ определения прогноза для исхода лечения при хирургических методах коррекции синдрома фето-фетальной трансфузии

Изобретение относится к медицине, а именно к акушерству, и может быть использовано при прогнозировании исхода хирургических методов коррекции фето-фетальной трансфузии. Для этого определяют следующие показатели: длительность операции - ВО (в часах), пренатально определенный предполагаемый вес...
Тип: Изобретение
Номер охранного документа: 0002676971
Дата охранного документа: 11.01.2019
14.03.2019
№219.016.df74

Способ коррекции проявлений синдрома фета-фетальной трансфузии многоплодной беременности при помощи лазерной септотомии под контролем фетоскопии

Изобретение относится к медицине, а именно к акушерству и фетальной хирургии. Проводят операцию с использованием высокотехнологичного оборудования. Устанавливают внутривенный катетер для проведения непрерывного токолиза во время операции. Определяют расположения плодов с помощью ультразвукового...
Тип: Изобретение
Номер охранного документа: 0002681755
Дата охранного документа: 12.03.2019
26.10.2019
№219.017.db07

Способ отработки хирургических навыков коррекции спинно-мозговой грыжи на абортусах с использованием псевдоматки и эндоскопических инструментов

Изобретение относится к медицине, а именно к акушерству и фетальной хирургии. Производят поздний медикаментозный индуцированный выкидыш у пациентки в сроке 20-21 неделя. Создают псевдоматку из эластического мяча с размерами, приближенными к 20-22 неделям гестации. В псевдоматке производят...
Тип: Изобретение
Номер охранного документа: 0002704204
Дата охранного документа: 24.10.2019
27.12.2019
№219.017.f2c5

Способ определения показания для баллонной окклюзии трахеи при гипоплазии легких плода

Изобретение относится к медицине, а именно к акушерству, и может быть использовано для определения показания для баллонной окклюзии трахеи при гипоплазии легких плода. Проводят ультразвуковое исследование (УЗИ), при котором определяют показатель площади легкого к окружности головы (LHR),...
Тип: Изобретение
Номер охранного документа: 0002710325
Дата охранного документа: 25.12.2019
05.08.2020
№220.018.3c8c

Способ малоинвазивного внутриутробного двухстороннего нефро-амниального шунтирования для коррекции двухсторонних обструктивных уропатий

Изобретение может быть использовано в медицине, а именно в акушерстве и фетальной хирургии, и может быть использовано для внутриутробного нефро-амниального шунтирования для коррекции двухсторонних обструктивных уропатий. Операцию проводят на обеих почках плода. Устанавливают внутривенный...
Тип: Изобретение
Номер охранного документа: 0002728944
Дата охранного документа: 03.08.2020
16.05.2023
№223.018.61da

Способ малоинвазивного внутриутробного везико-амниального шунтирования для определения остаточного диуреза у плода с дальнейшей амниоинфузией для профилактики летальной гипоплазии лёгких

Изобретение относится к медицине, а именно к акушерству и фетальной хирургии, и может быть использовано для антенатальной коррекции состояния плода при обструктивных уропатиях. Для этого под ультразвуковым контролем и общей анестезией в мочевой пузырь плода устанавливают везико-амнимальный шунт...
Тип: Изобретение
Номер охранного документа: 0002748718
Дата охранного документа: 31.05.2021
+ добавить свой РИД