×
12.01.2017
217.015.6141

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛА МЕТАФТОРИДОБОРАТА БАРИЯ-НАТРИЯ BaNa (BO)F

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии выращивания монокристаллов метафторидобората бария-натрия BaNa(ВО)F для использования в терагерцовой области спектра в диапазоне от 0,3 ТГц до 1 ТГц в качестве волновых пластин, поляризаторов, а также в воздушной терагерцовой фотонике. Монокристалл BaNa(ВО)F выращивают из высокотемпературного раствора путем снижения температуры раствор-расплава на вытягиваемую и вращающуюся ориентированную вдоль оптической оси затравку. В качестве растворителя используют борат натрия-бария NaBaBO. Кристаллизацию проводят в системе BaNa(BO)F-NaBaBO при соотношении BaNa(ВО)F:NaBaBO, равном 60-80:40-20 мол.%. Метафторидоборат бария-натрия BaNa(ВО)F обладает в диапазоне от 0,3 ТГц до 1 ТГц высоким двупреломлением (Δn/n=0.16) и низким поглощением (менее 10 см). Технический результат изобретения заключается в воспроизводимом получении монокристаллов BaNa(BO)F оптического качества, не содержащих видимых включений, с коэффициентом выхода - 3.75-3.95 г/(кг·град). 2 ил., 1 пр.

Изобретение относится к выращиванию монокристаллов из высокотемпературного раствора, в частности к получению материалов для использования в терагерцовой области спектра в качестве волновых пластин, поляризаторов, а также в воздушной терагерцовой фотонике.

Терагерцовый (ТГц) диапазон частот электромагнитного спектра распространяется от 0.3 до 10 ТГц, что соответствует длинам волн от 1 мм до 30 мкм. ТГц-лучи, подобно волнам ИК- и микроволнового диапазона, обладают способностью проникать в различные непроводящие материалы. Терагерцовое излучение не ионизирует вещество, что позволяет проводить безвредную для человека диагностику. В настоящее время во всем мире ведутся разработки по созданию методик применения излучения ТГц частотного диапазона для задач медицины и биологии. Связано это, прежде всего, с тем, что в ТГц диапазоне находятся частоты колебаний больших групп атомов, образующих молекулу и колебания водородных связей многих органических веществ (белки, молекулы ДНК).

Применение терагерцового диапазона возможно в области биомолекулярной спектроскопии [1], контроля окружающей среды [2], неразрушающем отображении полупроводников и медицинском отображении [3-5], а также других областях.

Перспективными кристаллами для терагерцовой поляризационной оптики и параметрических приборов являются полиморфные модификации метабората бария: α-BaB2O4 [6] и β-BaB2O4 [7-9]. Монокристалл α-BaB2O4 обладает высоким двупреломлением и используется в качестве волновых пластин и поляризаторов. Благодаря высокому порогу лазерного повреждения α-BaB2O4 потенциально пригоден для терагерцовой воздушной фотоники. В последней источником терагерцового излучения является воздушная плазма, создаваемая ультраинтенсивными фемтосекундными лазерными импульсами [6]. Монокристалл β-BaB2O4 также обладает прозрачностью и двупреломлением в терагерцовой области, что важно для фазового согласования, реализуемого на β-BaB2O4 удвоителя терагерцовой частоты в оптических параметрических усилителях.

Метафторидоборат бария-натрия Ba2Na33О6]2F (пространственная группа Р63/m) открыт авторами изобретения при исследовании системы NaF-BaB2O4, состав соединения не лежит на разрезе и принадлежит четверной взаимной системе Ва, Na // ВО2, F [10]. Общей структурной особенностью, обуславливающей близость ряда свойств модификаций BaB2O4 и Ba2Na32О6]2F, является присутствие в структуре метаборатного кольца [B3O6]3-.

Проведенные в Институте автоматики и электрометрии СО РАН на импульсном терагерцовом спектрометре сравнительные исследования свойств монокристаллов α-, β-BaB2O4 и Ba2Na3[B3O6]2F в терагерцовых компонентах спектра в диапазоне от 0.2 до 2 ТГц [11-12] показали, что исследуемые кристаллы характеризуются высоким двупреломлением, при этом с ростом частоты коэффициент поглощения возрастает. Результаты исследования показали, что монокристалл Ba2Na3(B3O6)2F характеризуется лучшим сочетанием свойств для поляризационных применений, чем α- и β-BaB2O4 на частотах от 0.3 ТГц до 1 ТГц, двупреломление изменяется от Δn=0.45 до Δn=0.47, при близких значениях коэффициентов поглощения. Для α-BaB2O4 величина Δn/n=023.=2.73=0.08, для β-BaB2O4 Δn/n=0.275/2.93=0.094, тогда как у Ba2Na3[B3O6]2F Δn/n=0.45/2.85=0.16.

Установлено, что соединение Ba2Na3[B3O6]2F плавится конгруэнтно при температуре 835°C, однако качественные кристаллы из стехиометрического расплава получить не удалось. Для выращивания монокристаллов Ba2Na33О6]2F были использованы следующие составы: на разрезе BaB2O4-NaF состав 50 мол. % BaB2O4, 50 мол. % NaF [10] и на разрезе Ba2Na3[B3O6]2F-BaF2 состав 40 мол. % BaF2, 60 мол. % Ba2Na3[B3O6]2F [13]. Фактически, оба состава принадлежат системе Ba2Na33О6]2F-BaF2, так как система BaB2O4-NaF химически неустойчива: при равных мольных соотношениях BaB2O4 и NaF реагируют полностью согласно реакции (1) с образованием BaF2 и Ba2Na3[B3O6]2F [14]:

Реакция завершается в твердой фазе при температуре 720°C, т.е. состав 50 мол. % BaB2O4, 50 мол. % NaF тождественен составу 50 мол. % BaF2, 50 мол. % Ba2Na3[B3O6]2F.

В известном способе [13] рост кристаллов проводили в нагревательной печи с вертикальным расположением нагревательных элементов вокруг муфеля. В платиновый тигель наплавляли раствор-расплав через стадии твердофазного синтеза из исходных реактивов (BaCO3, H3BO3, Na2CO3, NaF, BaF2), высокотемпературный раствор выдерживали при температуре 850°C для гомогенизации. Кристаллы выращивали на затравку, ориентированную вдоль оптической оси. Температура начала кристаллизации составляла 820°C. После определения равновесной температуры при касании затравкой в центре поверхности раствор-расплава производили ее разращивание при постоянных значениях скоростей одностороннего вращения 1 об/мин и вытягивания 0.4 мм/сут. Скорость снижения температуры составляла 0.5-1 град/сут, продолжительность эксперимента 50-60 дней, интервал снижения температуры 45-61 град. Коэффициент выхода кристалла составлял 2.11-1.90 г/(кг·град).

Существенным недостатком использования фторида бария в качестве растворителя является протекающий в стандартной атмосфере пирогидролиз [15, 16] - взаимодействие с парами воды согласно реакции (2):

Вследствие пирогидролиза BaF2 происходит изменение состава исходного высокотемпературного раствора, что приводит к падению коэффициента выхода кристалла в последовательных ростовых циклах, все более ранней потере морфологической устойчивости фронта кристаллизации, образованию напряженных дефектных кристаллов. Значительный объем кристаллов, выращенных с использованием растворителя BaF2, содержит видимые включения.

Задачей изобретения является получение монокристаллов метафторидобората бария-натрия Ba2Na33О6)2F с техническим результатом - повышение коэффициента выхода кристаллов оптического качества.

Поставленная задача достигается тем, что в способе выращивания монокристалла метафторидобората бария-натрия Ba2Na3(B3O6)2F из высокотемпературного раствора, включающем кристаллизацию путем снижения температуры раствор-расплава на вытягиваемую и вращающуюся ориентированную вдоль оптической оси затравку и охлаждение выращенного монокристалла, в качестве растворителя используют борат натрия-бария NaBaBO3 и кристаллизацию проводят в системе Ba2Na3(B3O6)2F-NaBaBO3 при соотношении Ba2Na3(B3O6)2F:NaBaBO3, равном 60-80:40-20 мол. %.

На фиг. 1 представлена а) линия ликвидуса системы Ba2Na33О6]2F-NaBaBO3, построенная по данным модифицированного визуально-политермического анализа (ВПА), температура нонвариантного равновесия (735°C) определена методом дифференциально-термического анализа; б) фотография образца, изготовленного из кристалла Ba2Na33О6]2F, выращенного в системе Ba2Na3[B3O6]2F-NaBaBO3.

На фиг. 2 - спектры комбинационного рассеяния образцов: а - β-BaB2O4, б - α-BaB2O4, в - Ba2Na3[B3O6]2F.

Выбор заявленного мольного соотношения компонентов Na33О6]2F-NaBaBO3, равного 60-80:40-20 мол. %, соответственно, обусловлен высоким содержанием основного вещества (фиг. 1а). Основным преимуществом выбранного растворителя является то, что соединение NaBaBO3 химически стабильно, не подвержено пирогидролизу, что позволяет воспроизводимо получать монокристаллы высокого качества, не содержащие видимых включений (фиг. 1б). Коэффициент выхода кристалла составляет 3,75-3,95 г/(кг·трад), что существенно превышает коэффициент выхода кристалла в системе Ba2Na3[B3O6]2F-BaF2 (2,11-1,90 г/(кг·трад)).

Пример типичного выполнения

Исходный состав соответствовал 80 мол. % Ba2Na33О6]2F, 20 мол. % NaBaBO3, температура нонвариантного равновесия системы - 735°C. В платиновый тигель диаметром 50 мм и высотой 60 мм наплавляют раствор-расплав массой 450 г, полученный известным способом через стадии твердофазного синтеза из исходных компонентов ВаСО3, Н3ВО3, Na2CO3, NaF, предельная температура синтеза 720°C. Рентгенофазовый анализ продукта твердофазного синтеза соответствует смеси соединений Ba2Na33О6]2F и NaBaBO3. При температуре 850°C высокотемпературный раствор выдерживали для гомогенизации в течение суток. Монокристаллы выращивали на затравку с поперечным сечением 5 мм2, ориентированную вдоль оптической оси. Температура начала кристаллизации составляла 815°C. После определения равновесной температуры при касании затравкой в центре поверхности раствор-расплава производили ее разращивание при постоянных значениях скоростей одностороннего вращения 1 об/мин и вытягивания 0.4 мм/сут. Скорость снижения температуры составляла от 0.5 до 0.8 град/сут, продолжительность эксперимента 57 дней, интервал снижения температуры 40 град. По окончании ростового цикла монокристалл поднимали над расплавом и охлаждали со скоростью 15 град/сут. Коэффициент выхода кристалла составил 3.80 г/(кг·град). Таким образом, из исходной шихты массой 450 г был получен качественный монокристалл массой 68.5 г при снижении температуры на 40 град.

Сопоставление спектров комбинационного рассеяния света монокристаллов α-ВВО и Ba2Na3(B3O6)2F в области 2-3 ТГц = 67-100 см-1 показывает, что Ba2Na3[B3O6]2F характеризуется меньшим поглощением в указанной области, чем α-BaB2O4 (фиг. 2).

Список использованных источников

1. Walther М., Fisher В., Schall М., Helm Н., uhd Jepsen P. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy // Chem. Pys. Lett. - 2000. - V. 332. - P. 389-395.

2. Quema A., Takahashi H., Sakai M., Goto M., Ono S., Sarukura N., Yamada N., Shioda R. Identification of Potential Estrogenic Environmental Pollutants by Terahertz Transmission Spectroscopy // Jpn. J. Appl. Phys. - 2003. - V. 42. - P. L932-L934.

3. Yamashita M., Kawase K., Otani C., Kiwa Т., Tonouchi M. Imaging of large-scale integrated circuits using laser terahertz emission microscopy // Opt. Express. - 2005. - V. 13. - P. 115-120.

4. Han P.Y., Cho G.C., Zhang X.-C. Time-domain transillumination of biological tissues with terahertz pulses // Opt. Lett. - 2000. - V. 25. - P. 242-244.

5. Kawase K., Ogawa Y., Watanabe Y., Inoue H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints // Opt. Express. - V. 11, №20. - 2003. - P. 2549-2554.

6. Liu J., Zhang X.C. Birefringence and absorption coefficients of alpha barium borate in terahertz range // J. Apll. Phys. - 2009. - V. l06. - P. 023107.

7. Liu J., Guo X., Dai J., Zhang X.C. Optical property of beta barium borate in terahertz region // Appl. Phes. Lett. - 2008. - V. 93. - P. 171102.

8. Saito S., Estasio E., Nakazato Т., Furukawa Y., Sgimizi Т., Surukura N. et.al. Observation of birefringence in BBO crystals in the terahertz regime // J. Crys. Growth. - 2009. - V. 311. - P. 895-898.

9. Estasio E., Saito S., Nakazato Т., Furukawa Y., Surukura N., Cadatal M., Pham M.H., Ponseca C., Mizuseki H., Kawazoe Y. Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design // Appl. Phes. Lett. - 2008. - V. 92. - P. 091116.

10. Bekker T.B., Kokh A.E., Kononova N.G., Fedorov P.P., Kuznetsov S.V. Crystal growth and phase equilibria in the BaB2O4-NaF system // Cryst. Growth&Des. - 2009. - V. 9, №6. - P. 4060-4063.

11. Анцыгин В.Д., Мамрашев А.А., Николаев Н.А., Потатуркин О.И. Малогабаритный терагерцовый спектрометр с использованием второй гармоники фемтосекундного волоконного лазера // Автометрия. - 2010. - Т. 46, №3. - С. 110-117.

12. Antsygin V.D., Mamrashev А.А., Nikolaev N.A., Potaturkin O.I., Bekker T.B., Solntsev V.P. Optical properties of borate crystals in terahertz region // Optics Communications. - 2013. - V. 309. V. 333-337.

13. Беккер Т.Б., Кононова Н.Г., Кох А.Е., Кузнецов С.В., Федоров П.П. Фазовые равновесия по разрезу Ba2Na33О6]2F-BaF2 // Кристаллография. - 2010. - Т. 55. №5. - С. 930-934 (прототип).

14. Bekker Т.В., P.P. Fedorov, Kokh А.Е. The ternary reciprocal system Na, Ba // BO2, F // Cryst. Growth&Des. - 2012. - V. 12, №1. - P. 129-134.

15. Раков Э.Г., Тесленко B.B. // Пирогидролиз неорганических фторидов. Энергоатомиздат, Москва, 1987, 152 с.

16. Кузнецов С.В., Осико В.В., Ткаченко Е.А., Федоров П.П. Неорганические нанофториды и нанокомпозиты на их основе // Успехи химии. - 2006. - Т. 75, №12. - С. 1193-1211.

Способ выращивания монокристалла метафторидобората бария-натрия BaNa(BO)F из высокотемпературного раствора фторидобората бария-натрия, включающий кристаллизацию путем снижения температуры раствор-расплава на вытягиваемую и вращающуюся ориентированную вдоль оптической оси затравку и охлаждение выращенного монокристалла, отличающийся тем, что в качестве растворителя используют борат натрия-бария NaBaBO и кристаллизацию проводят в системе NaBaBO - BaNa(BO)F: при соотношении BaNa(BO)F: NaBaBO, равном 80-60: 20-40 мол.%.
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛА МЕТАФТОРИДОБОРАТА БАРИЯ-НАТРИЯ BaNa (BO)F
Источник поступления информации: Роспатент

Показаны записи 31-33 из 33.
15.05.2023
№223.018.5c6b

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава SmSc(BO) нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки...
Тип: Изобретение
Номер охранного документа: 0002759536
Дата охранного документа: 15.11.2021
15.05.2023
№223.018.5c6c

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава SmSc(BO) нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки...
Тип: Изобретение
Номер охранного документа: 0002759536
Дата охранного документа: 15.11.2021
16.05.2023
№223.018.6222

Фотолюминесцентный материал состава nasryb(bo) и способ его получения

Изобретение относится к люминофорам с общей формулой АВС(ВО), где А, В, С - катионы щелочных, щелочноземельных и редкоземельных металлов, излучающих свет в инфракрасной области. Фотолюминесцентный материал состава NaSrYb(BO) излучает свет в инфракрасной области в диапазоне от 950 до 1050 нм и...
Тип: Изобретение
Номер охранного документа: 0002786154
Дата охранного документа: 19.12.2022
Показаны записи 11-20 из 20.
25.08.2017
№217.015.baac

Материал для дихроичной поляризации света - кристалл liba(bo)f

Изобретение относится к материалам для поляризационных оптических устройств, которые могут быть использованы для получения линейно-поляризованного света в оптико-электронных приборах: поляриметрах, эллипсометрах, дихрометрах, фотоэлектрических автоколлиматорах, модуляторах световых потоков,...
Тип: Изобретение
Номер охранного документа: 0002615691
Дата охранного документа: 06.04.2017
19.01.2018
№218.016.0419

Кристаллический материал для регистрации рентгеновского излучения

Изобретение относится к технологии получения кристаллического материала, являющегося твердым раствором общей формулы ВаSr(ВО)F, где 0≤x≤1 и 0≤y≤0,5, пригодного для регистрации рентгеновского излучения. Кристаллический материал ВаSr(ВО)F имеет центры окраски, образованные под воздействием...
Тип: Изобретение
Номер охранного документа: 0002630511
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0bba

Устройство для получения конденсата водяного пара из горючего природного газа и попутного нефтяного газа в полевых условиях для анализа содержания трития

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки...
Тип: Изобретение
Номер охранного документа: 0002632453
Дата охранного документа: 04.10.2017
17.02.2018
№218.016.2dea

Указание параметров физического совместно используемого нисходящего канала передачи в сетях беспроводной связи

Изобретение относится к области связи. Технический результат изобретения заключается в экономии объема передаваемых служебных сигналов из ресурсов для всех UE. Оборудование пользователя (UE) может принимать множество наборов параметров, каждый из которых включает в себя количество антенных...
Тип: Изобретение
Номер охранного документа: 0002643660
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.369f

Способ измерения характеристики изотопной системы образца при поэтапном выделении анализируемого вещества (варианты)

Группа изобретений относится к области аналитических методов изотопной геохронологии и геохимии. Способ включает измерение количества каждого из изотопов в анализируемом веществе, выделенном из навески образца на каждом из этапов выделения анализируемого вещества из навески образца; введение в...
Тип: Изобретение
Номер охранного документа: 0002646461
Дата охранного документа: 05.03.2018
01.03.2019
№219.016.cde0

Устройство для доставки контейнера с грунтом исследуемого небесного тела в посадочный аппарат возвращаемой на землю ступени космической станции и устройство для транспортирования грузов по трубопроводу

Группа изобретений относится к средствам взятия и транспортировки образцов, преимущественно внеземного грунта. Устройство содержит трубопровод (5), узел транспортирования контейнера по трубопроводу и узел загрузки и подготовки контейнера. Последний содержит поворотный кронштейн (8),...
Тип: Изобретение
Номер охранного документа: 0002413660
Дата охранного документа: 10.03.2011
29.05.2019
№219.017.67b0

Устройство диагностирования межканальной неустойчивости в реакторе с водой под давлением

Изобретение относится к ядерной энергетике, в частности к области контроля теплоносителя в активной зоне реактора, и предназначено для контроля возникновения межканальной неустойчивости (регулярных пульсаций расхода) в активной зоне реактора в режиме реального времени и может быть использовано...
Тип: Изобретение
Номер охранного документа: 0002414759
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.67ea

Способ диагностики возникновения межканальной неустойчивости в реакторе с водой под давлением

Изобретение относится к ядерной энергетике, в частности к области контроля теплоносителя в активной зоне реактора с водой под давлением, и предназначено для контроля возникновения межканальной неустойчивости (регулярных пульсаций расхода) в активной зоне в режиме реального времени. Регистрируют...
Тип: Изобретение
Номер охранного документа: 0002427937
Дата охранного документа: 27.08.2011
31.05.2019
№219.017.7137

Дихроичный материал - фторидоборат с "антицеолитной" структурой

Изобретение относится к материалам для поляризационных оптических устройств. Дихроичный материал представляет собой фторидоборат с «антицеолитной» структурой с общей формулой ; при х=0, у=(0÷0.1) в виде каркаса [Ва(ВО)], сложенного чередующимися слоями (АВАВ) вдоль направления...
Тип: Изобретение
Номер охранного документа: 0002689596
Дата охранного документа: 28.05.2019
17.06.2023
№223.018.811f

Монокристаллический материал для твердотельной дозиметрии

Изобретение относится к материалам для термодозиметрических устройств, которые могут быть использованы в качестве твердотельных термолюминесцентных детекторов ионизирующих излучений. Монокристаллический материал для твердотельной дозиметрии - фторидоборат с «антицеолитной» структурой -...
Тип: Изобретение
Номер охранного документа: 0002763462
Дата охранного документа: 29.12.2021
+ добавить свой РИД