×
12.01.2017
217.015.6119

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА РАКЕТНОГО ТОПЛИВА В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЁТА

Вид РИД

Изобретение

№ охранного документа
0002591131
Дата охранного документа
10.07.2016
Аннотация: Изобретение относится к космическим двигательным системам и может использоваться при создании в будущем орбитального заправочного комплекса (ОЗК). Способ включает доставку на ОЗК воды и получение из неё электролизом водорода и кислорода. Эти газы предварительно охлаждают при контакте с холодной поверхностью ОЗК, затем компримируют и повторно охлаждают, сжижают дросселированием и собирают в виде жидких компонентов топлива. Процессы электролиза воды и компримирования осуществляют поочередно, пневматически изолируя электролизер от получаемых газов. При компримировании сначала сжимают водород электрохимическим способом, а затем этим водородом изотермически сжимают кислород. После сжижения кислорода использованный для его компримирования водород перед дросселированием охлаждают полученным жидким кислородом до температуры ниже температуры инверсии при данном давлении. Техническим результатом изобретения является повышение технологичности производства жидкого ракетного топлива, увеличение срока его хранения на ОЗК, с повышением надежности и ресурса ОЗК в целом.

Изобретение относится к космической технике и может использоваться при создании перспективного орбитального заправочного комплекса (ОЗК).

Орбитальный заправочный комплекс для осуществления дальних космических экспедиций является альтернативой созданию ракет-носителей сверхтяжелого класса, доставляющих необходимый для экспедиции запас топлива с Земли. Проект орбитальной заправки разрабатывался еще Вернером фон Брауном в 1950-х годах для лунной программы. При этом предполагалось накапливать на орбите топливо, доставляемое с Земли порциями носителями более легких классов.

Более выгодно, однако, производить топливо прямо на орбите, для чего использовать электролиз воды, доставляемой с Земли. Питание электролизера при этом осуществляется от солнечных батарей орбитального комплекса (орбитальной станции). В результате получаются водород и кислород, которые в космосе являются наиболее эффективным ракетным топливом (РТ). По такому принципу работают, например, реактивные двигательные установки, предназначенные для небольших аппаратов (патенты RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01), и RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01)). Запас газообразного топлива в них, однако, ограничен рабочим давлением электролизера и габаритами газовых емкостей, в результате такие установки способны работать лишь в импульсном режиме.

Для использования водорода и кислорода в качестве РТ более крупных объектов необходимо сжижать газы, и здесь, в принципе, можно пользоваться традиционными схемами, применяемыми в наземных криогенных установках.

Наиболее эффективным способом здесь является адиабатическое расширение предварительно компримированного и охлажденного газа в детандере: в этом случае газ, расширяясь, дополнительно совершает работу и охлаждается сильнее («Элементарный учебник физики» под ред. Г.С. Ландсберга, т. 1 «Механика. Теплота. Молекулярная физика», М.:, изд. «Наука», 1985 г., § 304 « Сжижение газов в технике», с. 556-558; «Сжижение газов». Яндекс. Словари. БСЭ. 1969-1978 гг.). Недостатком традиционных методов сжижения, использующих компрессоры и детандеры, является большая масса соответствующих установок, сложность их обслуживания и относительно небольшой ресурс основных "динамических" агрегатов. В космосе это делает подобные способы сжижения газов трудноприменимыми.

В условиях космического полета более целесообразно применять пассивные методы сжижения газов с минимальным использованием динамических агрегатов. Для охлаждения водорода и кислорода (как низкого, так и высокого давления) целесообразно использовать холод конструкций, расположенных на теневой стороне орбитального комплекса (температура конструкций там может достигать 100-150 K). Более глубокое охлаждение достигается при дросселировании охлажденного газа высокого давления (эффект Джоуля-Томсона). Подобная методика используется и в криогенном ОЗК, описанном в (Notardonato W, Johnson W, Swanger A, McQuade W. 2012 In-space propellant production using water. In Proc. AIAA SPACE 2012 Conference and Exposition, number AIAA 2012-5288, 11-13 September 2012, Pasadena, CA). Данный способ производства РТ в условиях космического полета принят за прототип. Способ производства ракетного топлива в условиях космического полета включает доставку на орбитальный комплекс воды с Земли, ее разложение электротоком с раздельным получением водорода и кислорода, затем предварительное охлаждение этих газов при контакте с холодной поверхностью конструкции орбитального комплекса, компримирование водорода и кислорода с их повторным охлаждением тем же способом, сжижение кислорода путем его дросселирования, а также сбор полученных газов.

Здесь применяется многокаскадное охлаждение электролизных газов, при этом для кислорода и водорода схемы охлаждения существенно различаются.

Для сжижения кислорода после его предварительного охлаждения и компримирования используются только две ступени охлаждения в теплообменниках-радиаторах и окончательное дросселирование с последующим сбором жидкого окислителя. Простота схемы объясняется сравнительно высокими температурами кипения (90 K) и инверсии (900 K) кислорода.

Схема сжижения водорода гораздо сложнее, поскольку его температура кипения гораздо ниже (20 K), а низкая температура инверсии (200 K) требует также глубокого охлаждения газа перед его окончательным дросселированием с ожижением. Здесь после предварительного охлаждения и компримирования газа используются 4 ступени охлаждения, две из которых включают высокооборотные турбодетандеры. Только после этого охлажденный до 40 K водород дросселируют и получают двухфазную капельно-газовую смесь. Ее направляют в криоемкость, откуда оставшийся газообразным водород возвращается в начало технологической цепочки. При этом в этой цепочке отсутствует орто-пара-конвертер водорода, что не позволяет рассчитывать на сколько-нибудь длительный срок хранения жидкого ракетного горючего (И.В. Рожков и др. «Получение жидкого водорода», Изд. Химия, М:, 1967 г., стр. 46, а также справочник «Водород, получение, хранение…» под ред. Ю.Д. Гамбурга, М.: Химия, 1989 г., стр. 57).

Сложность использованной схемы получения ракетного горючего, наличие в ней турбодетандеров и является основным недостатком прототипа. Кроме того, описанный способ не предусматривает длительного хранения полученного горючего (жидкого водорода), что необходимо для надежного функционирования ОЗК.

Задачей данного предложения является разработка технологически простого и надежного «космического» способа производства РТ с более длительным сроком хранения и с достаточно высокой плотностью энергии. При этом желательно, чтобы способ был пригодным для использования в ближайшее время, т.е. он должен опираться на уже существующие технологии.

Техническим результатом разработки является упрощение технологии производства, увеличение ресурса ОЗК, снижение его массогабаритных характеристик, увеличение срока хранения РТ на борту комплекса и повышение надежности орбитального заправочного комплекса в целом.

Технический результат достигается тем, что в способе производства ракетного топлива в условиях космического полета, включающем доставку на орбитальный комплекс воды с Земли, ее разложение электротоком с раздельным получением водорода и кислорода, предварительное охлаждение этих газов при контакте с холодной поверхностью конструкции орбитального комплекса, компримирование водорода и кислорода с их повторным охлаждением тем же способом, сжижение кислорода путем его дросселирования, сбор полученных газов, процессы электролиза воды и компримирования полученных при этом водорода и кислорода осуществляют поочередно, пневматически изолируя электролизер от полученных газов, при этом компримируют водород и кислород последовательно - сначала электрохимическим способом сжимают водород, а затем этим водородом изотермически сжимают кислород.

Суть данного предложения в следующем.

Модифицирована наиболее проблематичная стадия технологического процесса производства топлива - компримирование электролизных газов (водорода и кислорода) до высокого давления. В обоих случаях для этого используется электрохимический процесс, без громоздких, энергозатратных механических компрессоров высокого давления. Это повышает ресурс соответствующей холодильной установки и снижает ее массогабаритные характеристики.

Предложенный способ позволяет получать ракетное топливо без сжижения водорода, что на порядок сложнее, чем сжижение кислорода. При этом электрохимическая компрессия водорода дает возможность получить газообразный водород с плотностью жидкого (при давлении около 700 атм). В этом случае плотность энергии в баллоне с водородом при давлении 700 атм будет примерно такой же, что и в криогенном блоке, где поддерживается температура 20 K. Технология же хранения газа гораздо проще, а срок хранения значительно больше. Одновременно с производством газообразного ракетного горючего высокой плотности производится также и жидкий окислитель, при этом эти технологические процессы взаимно связаны.

Реализовать данный способ можно следующим образом. Доставленную с Земли на орбитальный комплекс воду направляют в твердополимерный электролизер для ее разложения электротоком с раздельным получением водорода и кислорода. Затем полученные газы охлаждают, используя холод конструкций космического аппарата. При этом кислород охлаждают до минимальной температуры, которую можно получить таким образом (около 150 K), а водород - лишь на несколько десятков градусов, до температуры 20-70°C, приемлемой для электрохимического компрессора водорода (ЭКВ). Компримирование водорода здесь осуществляется, как и в электролизере, за счет протонной проводимости твердополимерной мембраны (Electrochemical hydrogen compressor - Wikipedia). Необходимо отметить, что опытный экземпляр такого компрессора достиг давления 700 атм, при котором плотность газообразного водорода близка к плотности жидкого («Hydrogen - А Competitive Energy Storage Medium To Enable the Large Scale Integration of Renewable Energies», Seville, 15-16 November 2012, HyET Electrochemical Hydrogen Compression, http://www.iphe.net/docs/Events/Seville_11-12/V).

Порцию газов, предназначенных для производства ракетного топлива, собирают в промежуточных емкостях, которые пневматически изолируют от твердополимерного электролизера (последний при этом может отключаться или переключаться на заполнение других таких же емкостей). Затем собранный водород направляют в ЭКВ, выход которого подключен к устройству, компримирующему наработанный кислород. Питание ЭКВ, как и электролизера, осуществляется от солнечных батарей КА или от его бортовой системы электроснабжения. При повышении давления на выходе ЭКВ кислород сжимается водородом и дополнительно охлаждается тем же способом, что и ранее. Компримирование кислорода может проводиться, например, в цилиндре с подвижным поршнем (компенсаторе перепада давления) или в устройствах сильфонного типа.

Если используется изобарный электролизер (т.е. давления водорода и кислорода одинаковы), объем водорода всегда вдвое больше объема кислорода. По этой причине при сжатии кислорода водородом в замкнутом объеме конечное давление газов будет втрое выше их начального давления. Например, при достигнутом в настоящее время рабочем давлении электролизеров 100 атм кислород можно сжать таким образом до давления 300 атм. Таким способом можно получить кислород, охлажденный до температуры порядка 150 K и с давлением несколько сотен атмосфер. Этого более чем достаточно, чтобы при последующем дросселировании (например, с использованием пористой преграды) превратить его в жидкость, т.е. получить жидкий окислитель для ракетного двигателя.

Если используются дифференциальные электролизные ячейки (WO 0137359 A2, 25.05.2001; US 6585869 B2, 01.07.2003; WO 0227070 A2, 04.04.2002), начальный объем кислорода перед сжатием можно сделать меньше половинного объема водорода и давление компримированного кислорода будет выше на тройную величину начального перепада давления. Например, при начальном давлении водорода 100 атм, а кислорода - 150 атм конечное давление сжатых газов приблизится к 450 атм.

После сжижения порции кислорода водород высокого давления, который применялся для сжатия кислорода, направляется в соответствующие баллоны (при необходимости он может быть еще дополнительно компримирован электрохимическим способом). В результате, помимо жидкого окислителя будет получена порция газообразного ракетного горючего (водорода) с плотностью, близкой к плотности жидкого, но с более длительным сроком хранения. Постоянное наличие на борту орбитального комплекса запаса газообразного водорода высокого давления позволяет также использовать его для корректирующих двигателей самого космического аппарата.

Способ производства ракетного топлива в условиях космического полета, включающий доставку на орбитальный комплекс воды с Земли, ее разложение электротоком с раздельным получением водорода и кислорода, предварительное охлаждение этих газов при контакте с холодной поверхностью конструкции орбитального комплекса, компримирование водорода и кислорода с их повторным охлаждением тем же способом, сжижение кислорода путем его дросселирования и сбор полученных газов, отличающийся тем, что процессы электролиза воды и компримирования полученных при этом водорода и кислорода осуществляют поочередно, пневматически изолируя электролизер от полученных газов, при этом компримируют водород и кислород последовательно - сначала электрохимическим способом сжимают водород, а затем этим водородом изотермически сжимают кислород.
Источник поступления информации: Роспатент

Показаны записи 201-210 из 372.
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4b3e

Приемник-преобразователь лазерного излучения

Приемник-преобразователь лазерного излучения включает приемную плоскость, выполненную в виде круговой панели. На внешней стороне панели установлены фотоэлектрические преобразователи на основе полупроводниковых фотоэлементов (ФЭ) с внутренним фотоэффектом для непосредственного преобразования...
Тип: Изобретение
Номер охранного документа: 0002594953
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d45

Электрогенерирующая сборка термоэмиссионного реактора-преобразователя (варианты)

Изобретение может быть использовано в космической технике и атомной энергетике при создании высокоэффективных космических ядерных энергетических установок на основе термоэмиссионного реактора-преобразователя. В электрогенерирующей сборке (ЭГС) термоэмиссионного реактора-преобразователя,...
Тип: Изобретение
Номер охранного документа: 0002595261
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4ec1

Система спутников наблюдения планеты

Изобретение относится к космическим спутниковым системам локального обзора. Система состоит из спутников с оптико-электронной аппаратурой дистанционного зондирования, размещенных на круговых орбитах с одинаковыми высотами и наклонениями. Восходящие узлы орбит перемещаются относительно проекции...
Тип: Изобретение
Номер охранного документа: 0002595240
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
Показаны записи 201-210 из 298.
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
+ добавить свой РИД