×
12.01.2017
217.015.5dfc

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ ИЗДЕЛИЙ ИЗ ТВЕРДЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам. Способ диффузионного насыщения изделия из твердого сплава в легкоплавком свинцово-висмутовом расплаве включает проведение предварительной кратковременной высокотемпературной цементации изделия и последующее диффузионное насыщение его поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем титан в растворенном состоянии и в который вводят кобальт в порошковом или компактном виде. Упомянутую цементацию проводят при температуре 1150-1300°C в течение 10-20 мин. Легкоплавкий свинцово-висмутовый расплав для диффузионного насыщения содержит компоненты при следующем соотношении, мас. %: свинец 38-48, висмут 50-55, титан 1-5 и кобальт 1-2. Обеспечивается повышение износостойкости и эксплуатационного ресурса изделий из твердых сплавов в условиях воздействия на них высоких контактных напряжений, а также производительности технологического процесса. 1 табл., 3 пр.

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам, что обеспечивает рост их эксплуатационного ресурса, а при использовании изделий из твердых сплавов в качестве инструмента - производительности и качества обработки давлением и резанием.

Известны способы повышения работоспособности инструмента за счет изменения состава и структуры его поверхностных слоев, осуществляемые путем диффузионного насыщения поверхности инструмента в процессе химико-термической обработки элементами внедрения (азотирования, нитроцементации и др.), наплавкой, напылением сплавами заданного состава: плазменно-дуговая наплавка, плазменное напыление, финишное плазменное напыление, а также физические и химические способы осаждения элементов из газовых, паровых, жидких и твердых фаз [Инструментальные материалы. Учебн. пособие / Г.А. Воробьева, Е.Е. Складнова, А.Ф. Леонов, В.К. Ерофеев. - СПб.: Политехника, 2005. 268 с.]. Недостатком технологий химико-термической обработки является то, что они в большинстве случаев повышают хрупкость инструмента. Наплавка и напыление не обеспечивают прочной связи покрытия с основой, а также характеризуются безвозвратными потерями наносимого на поверхность инструмента материала. Общими недостатками физических и химических способов осаждения являются: сложность технологического процесса, высокая стоимость технологического оборудования и технологические сложности формирования равномерных покрытий на всех поверхностях изделия.

Известен также способ получения диффузионного покрытия [А.С. 1145051 опуб. 15.03.85, бюл. №10], включающий титанирование при 1000…1030°C в порошкообразной засыпке при пониженном давлении в течение 0,5…1 ч. с последующим карбонитрированием, при этом карбонитрирование проводят в среде четыреххлористого углерода при давлении 270…300 Па, и осуществляют в атмосфере азота с добавлением четыреххлористого углерода в количестве 1…2 г на 1 м2 обрабатываемой поверхности. Недостатками данной технологии является то, что одновременная адсорбция из насыщающей среды титана и углерода приводит к образованию на поверхности изделия слоя карбида титана, диффузионно не связанного с основным материалом покрываемого изделия, что снижает прочность сцепления покрытия с основой. При этом само покрытие обладает очень высокой твердостью и хрупкостью. Кроме этого, использование четыреххлористого углерода в настоящее время запрещается вследствие его негативного влияния на озоновый слой земли и канцерогенности.

Известен также способ диффузионного насыщения титаном из среды легкоплавких растворов (Артемьев В.П., Чаевский М.И. Диффузионное титанирование в среде жидкометаллических расплавов. - В сб.: Адгезия расплавов и пайка материалов, - К.: Наукова думка, 1986. - С. 3-4.). Нанесение покрытий данным способом осуществляется путем выдержки стального изделия в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. В результате выдержки стального изделия в расплаве происходит адсорбция титана на его поверхности, диффузия титана вглубь изделия. При этом, так как титан является сильным карбидообразующим элементом, он забирает углерод из цементита стали и образует собственные карбиды, которые выделяются на поверхности изделия. Карбиды титана обладают очень высокой твердостью, что обеспечивает изделию высокую износостойкость.

Недостатком данного способа является то, что при образовании карбидов титана происходит отток углерода из стали, приводящий к образованию под поверхностным, износостойким слоем обезуглероженного слоя, обладающего низкой твердостью и прочностью. В результате этого при наличии механического воздействия на поверхности происходит продавливание карбидного слоя, его деформация, растрескивание и выкрашивание. При этом твердые частицы покрытия могут приводить к еще более интенсивному износу трущихся поверхностей.

Наиболее близким к заявляемому изобретению является способ повышения износостойкости стальных изделий [Пат. №2293792], включающий диффузионное насыщение поверхности стальных изделий карбидообразующими элементами, в частности, титаном путем выдержки стального изделия в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. При этом для исключения образования под покрытием обезуглероженного слоя перед нанесением покрытий изделие подвергают кратковременной цементации длительностью 20-30 минут при температуре 950-1050°C.

Недостатком данного способа является то, что он не может быть использован для титанирования изделий из твердых сплавов типа ВК, ТК, ТТК, испытывающих при эксплуатации высокие контактные напряжения, так как он не обеспечивают исключение образования под формирующимся покрытием на базе титана мягкого, относительно основы и покрытия, подслоя.

Задачей заявляемого изобретения является исключение образования под покрытием подслоя с пониженной твердостью при нанесении титана на изделия из твердых сплавов типа ВК, ТК, ТТК, вызывающего при механическом воздействия на покрытие его деформацию, растрескивание и выкрашивание, при одновременном сокращении длительности технологического процесса.

Технический результат - повышение износостойкости и эксплуатационного ресурса изделий из твердых сплавов ВК, ТК, ТТК в условиях воздействия на них высоких контактных напряжений, а также производительности технологического процесса.

Технический результат достигается тем, что в способе повышения износостойкости изделий из твердых сплавов, включающем проведение предварительной кратковременной, высокотемпературной цементации изделий и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при этом цементацию проводят при температуре 1150-1300°C в течение 10-20 мин, а в легкоплавкий расплав в порошковом или компактном виде вводится кобальт при следующем соотношении компонентов, мас. %:

Свинец 38-48
Висмут 50-55
Титан 1-5
Кобальт 1-2

Благодаря дополнительному введению в легкоплавкий расплав в порошковом или компактном виде кобальта, мас. %: 1-2%, исключается снижение концентрации кобальта (элемента, связывающего между собой частицы карбидов WC, TiC и др. карбиды) в поверхностных слоях насыщаемого твердого сплава, так как тормозится процесс растворения кобальта твердого сплава в легкоплавком расплаве. При этом превышение концентрации кобальта в легкоплавком расплаве более 2% вызывает его адсорбцию под покрытием, что снижает твердость подслоя под титановым покрытием, а при концентрации кобальта в легкоплавком расплаве менее 1% не устраняет процесс растворения кобальта твердого сплава в легкоплавком расплаве. Кроме этого для исключения образования под титановым покрытием подслоя с пониженной твердостью, образующегося вследствие его обезуглероживания, требуется проводить предварительную цементацию изделий из твердых сплавов при температурах 1150-1300°C. В данном диапазоне температур значительно возрастает растворимость углерода в кобальте, что обеспечивает насыщение (обогащение) поверхностных слоев изделий из твердых сплавов углеродом. При этом растворимость углерода в кобальте резко возрастает с повышением температуры цементации и достигает максимума 4,3% при температуре образования эвтектики - 1319°C [Диаграммы состояния двойных и многокомпонентных систем на основе железа. Банных О.А., Будберг П.Б., Алисова С.П. и др. Металлургия, 1986]. Таким образом, проведение цементации в интервале температур (1150-1300°C) близких, но несколько меньших эвтектической температуры (чтобы исключить образование жидкой фазы), обеспечивает увеличение концентрации в поверхностных слоях твердых сплавов несвязанного химическим соединением углерода. Этот дополнительно введенный в поверхностные слои твердого сплава углерод, а не углерод, находящийся в твердом сплаве, участвует в формировании карбидов титана, образующихся при диффузионном насыщении поверхности изделий титаном, что исключает образование под покрытием подслоя с пониженной твердостью. Кроме этого, высокие температуры цементации обеспечивают рост диффузионной подвижности углерода, что позволяет сократить длительность процесса цементации, а, следовательно, рост производительности технологического процесса, обеспечивающего повышение износостойкости изделий из твердых сплавов.

Пластины обрабатывались по трем технологическим вариантам:

1-й вариант - пластины подвергались диффузионному насыщению в легкоплавком расплаве без предварительной цементации;

2-й вариант - пластины подвергались диффузионному насыщению после цементации, выполненной по режимам прототипа, в легкоплавком расплаве (Pb+Bi+Ti), не содержащем кобальт;

3-й вариант - пластины подвергались диффузионному насыщению в легкоплавком свинцово-висмутовом расплаве по технологии заявляемого способа. При этом выбирались предельные значения диапазона температуры и длительности процесса цементации и оптимальная концентрация кобальта в легкоплавком расплаве.

Пример 1. Проводилось диффузионное насыщение изделия в легкоплавком расплаве, содержащем 38% свинца, 55% висмута, 5% титана и 2% кобальта, твердосплавных пластин марки Т5К10 (исходная твердость 88,5 HRA) при температуре 1150-1300°C длительностью 10-20 минут.

Пример 2. Пример 1. Проводилось диффузионное насыщение изделия в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана и 1,5% кобальта, твердосплавных пластин марки Т5К10 (исходная твердость 88,5 HRA) при температуре 1150-1300°C длительностью 10-20 минут.

Пример 3. Проводилось диффузионное насыщение изделия в легкоплавком расплаве, содержащем 48% свинца, 50% висмута, 1% титана и 1% кобальта, твердосплавных пластин марки Т5К10 (исходная твердость 88,5 HRA) при температуре 1150-1300°C длительностью 10-20 минут.

Сравнительная оценка эффективности заявляемого способа повышения износостойкости изделий из твердых сплавов проводилась на основании анализа изменения твердости пластин по Роквеллу HRA и микротвердости их поверхности Н50, а также периода стойкости. Период стойкости определялся путем точения прутков из стали Х12МФ твердостью 40…42 HRCэ, при скорости резания 100 м/мин, глубине резания 2,5 мм, подаче 0,2 мм/об Результаты испытаний приведены в таблице 1.

Как следует из результатов исследований, представленных в таблице 1, предварительная цементация и введение в легкоплавкий расплав кобальта являются необходимыми операциями технологического процесса, обеспечивающими повышение стойкости твердосплавного инструмента. При отсутствии кобальта в легкоплавком расплаве, а также предварительной цементации твердосплавных пластин диффузионное титанирование приводит к снижению стойкости режущего инструмента относительно исходного состояния (влияние обезуглероженного подслоя и снижения концентрации кобальта).

Введение в расплав кобальта и проведение перед диффузионным титанированием цементации обеспечивают повышение износостойкости твердосплавных пластин. При этом наибольшее повышение их стойкости обеспечивает проведение процесса в легкоплавком расплаве заявляемого состава, в соответствии с рекомендуемыми режимами. Так, по сравнению с исходным состоянием, стойкость твердосплавных режущих пластин возросла более чем в 3 раза, а по сравнению с прототипом - более чем в 2 раза, при этом наблюдается значительное повышение твердости поверхностных слоев инструмента до 32000 МПа, что обеспечивает возможность обрабатывать материалы с высокой твердостью. Цементация, выполненная по режимам прототипа, не устраняет образование под покрытием подслоя с пониженной твердостью, что подтверждается снижением твердости по Роквеллу относительно исходного состояния твердого сплава.

Аналогичные результаты были получены при использовании заявляемого способа для повышения износостойкости твердосплавных пластин, изготовленных из сплава ВК8.

Таким образом, предложенный способ, включающий проведение диффузионного титанирования изделий из твердых сплавов в легкоплавком расплаве, содержащем кобальт, и предварительную высокотемпературную цементацию, позволяет значительно повысить износостойкость этих изделий, в частности, инструмента, за счет исключения образования под твердым карбидным титановым покрытием мягкого подслоя, а также повысить производительность технологического процесса.

Способ диффузионного насыщения изделия из твердого сплава в легкоплавком свинцово-висмутовом расплаве, включающий проведение предварительной кратковременной высокотемпературной цементации изделия и последующее диффузионное насыщение его поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем титан в растворенном состоянии, отличающийся тем, что цементацию проводят при температуре 1150-1300°C в течение 10-20 мин, в легкоплавкий свинцово-висмутовый расплав вводят кобальт в порошковом или компактном виде, а диффузионное насыщение проводят при следующем соотношении компонентов расплава, мас. %:
Источник поступления информации: Роспатент

Показаны записи 221-230 из 479.
10.05.2018
№218.016.4165

Способ получения дынного масла и жмыха

Изобретение относится к масложировой промышленности. Способ получения дынного масла и жмыха включает сушку семян, очистку семян от сорных примесей, обрушивание методом однократного удара, отделение из рушанки на ситовой поверхности и в вертикальном воздушном потоке свободной плодовой оболочки,...
Тип: Изобретение
Номер охранного документа: 0002649022
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4179

Способ предотвращения образования гидратов в газоводяной системе

Изобретение относится к предотвращению гидратообразования в газоводяных системах и может быть использовано в нефтегазодобывающей и перерабатывающей промышленности. Предлагаемый способ предотвращения образования гидратов в газоводяной системе включает определение термобарических параметров...
Тип: Изобретение
Номер охранного документа: 0002649162
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4184

Способ вскрытия продуктивного пласта на управляемой депрессии

Изобретение относится к области нефтяной и газовой промышленности, и в частности к бурению нефтяных скважин. Способ включает спуск в скважину колонны бурильных труб с долотом, обвязку устья скважины, промывку ствола скважины и подачу на долото при бурении промывочной жидкости, проведение...
Тип: Изобретение
Номер охранного документа: 0002649204
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4190

Способ управления системой приводов вибросита

Предложенный способ относится преимущественно к нефтяной и газовой промышленности и может быть применен для управления системой приводов бурового вибросита с линейной или эллиптической траекторией колебаний рамы. Способ управления системой приводов вибросита из двух дебалансных возбудителей...
Тип: Изобретение
Номер охранного документа: 0002649203
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.41a1

Способ получения эфирного масла из шалфея мускатного

Изобретение относится к эфиромасличной промышленности. Способ получения эфирного масла из свежеубранного сырья шалфея мускатного в перегонных аппаратах периодического действия, включающий измельчение сырья, загрузку измельченного сырья в аппарат, отгонку эфирного масла потоком водяного острого...
Тип: Изобретение
Номер охранного документа: 0002649023
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.41a5

Модульное ветроколесо

Изобретение относится к ветроколесу. Модульное ветроколесо содержит дугообразные лопасти, которые расположены вокруг оси вращения ветроколеса, каждая из которых связана с крепежным элементом, расположенным вдоль оси вращения ветроколеса. Вдоль оси вращения ветроколеса установлены передний и...
Тип: Изобретение
Номер охранного документа: 0002649166
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.426b

Активатор прорастания семян озимой пшеницы

Изобретение относится к активатору прорастания семян озимой пшеницы, представляющему собой 3-бензил-4-(N-бензилкарбамоилметил)-2-пиридин-3-ил-1,3-оксазолидин формулы 1, в концентрациях 0,005 и 0,0005 мас. %. Активатор согласно изобретению позволяет улучшить посевные качества семян. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002649394
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.43b9

Комплексная добавка для бетонной смеси

Изобретение относится к строительным материалам, в частности к составам комплексных добавок для бетонных смесей. Технический результат - повышение удобоукладываемости смесей, а также повышение прочности изделий и конструкций, особенно в ранние сроки. Комплексная добавка для бетонной смеси,...
Тип: Изобретение
Номер охранного документа: 0002649702
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4445

Стабилизированный аксиально-радиальный генератор постоянного тока

Изобретение относится к электротехнике, в частности к электрическим машинам постоянного тока. Технический результат - улучшение массогабаритных показателей. Стабилизированный аксиально-радиальный генератор постоянного тока содержит корпус, внутренний аксиальный магнитопровод с двумя активными...
Тип: Изобретение
Номер охранного документа: 0002649913
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.44bb

Устройство для определения места повреждения кабеля

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, установленный в центре свинцового контейнера в расположенном...
Тип: Изобретение
Номер охранного документа: 0002650081
Дата охранного документа: 06.04.2018
Показаны записи 221-226 из 226.
18.05.2019
№219.017.56af

Способ нанесения диффузионных покрытий на стальные изделия

Изобретение относится к технологиям, обеспечивающим повышение стойкости материалов изделий к механическим воздействиям и к воздействиям агрессивных рабочих сред. Стальные изделия подвергают диффузионному насыщению при температуре 650-1250°С в расплаве, содержащем следующие компоненты, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002312164
Дата охранного документа: 10.12.2007
19.06.2019
№219.017.8445

Инструмент для обработки металлов резанием и давлением

Изобретение относится к инструментальным материалам, в частности, к инструменту для обработки металлов резанием или давлением с упрочняющими покрытиями. Инструмент содержит твердосплавную или стальную основу с упрочняющим покрытием. В качестве упрочняющего покрытия используют медно-никелевый...
Тип: Изобретение
Номер охранного документа: 0002271265
Дата охранного документа: 10.03.2006
22.06.2019
№219.017.8e80

Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов

Устройство относится к установкам для диффузионной металлизации изделий для придания поверхностным слоям требуемых физико-химических свойств и может использоваться в машиностроении, в инструментальной промышленности и других областях. Устройство для диффузионной металлизации изделий в...
Тип: Изобретение
Номер охранного документа: 0002692142
Дата охранного документа: 21.06.2019
02.09.2019
№219.017.c662

Поршневая машина

Поршневая машина предназначена для использования в машиностроении в качестве мотора, компрессора или насоса. Машина содержит корпус, в котором размещены приводной вал, цилиндры и поршни с центральными отверстиями, через которые проходят оси с каналами, заполненными рабочим телом. Поршни имеют...
Тип: Изобретение
Номер охранного документа: 0002698867
Дата охранного документа: 30.08.2019
27.05.2023
№223.018.7114

Аксиальный поршневой двигатель внутреннего сгорания

Изобретение может быть использовано в двигателях внутреннего сгорания. Аксиальный поршневой двигатель внутреннего сгорания содержит корпус (1), в котором по центру размещен приводной вал (8), на котором зафиксировано зубчатое колесо (43). Аксиально относительно оси приводного вала (8)...
Тип: Изобретение
Номер охранного документа: 0002773409
Дата охранного документа: 03.06.2022
27.05.2023
№223.018.7123

Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов

Изобретение относится к устройству для получения диффузионного покрытия на поверхности изделий в легкоплавком жидкометаллическом растворе, которое может быть использовано в различных отраслях машиностроения. Указанное устройство содержит камеру, разделенную на три зоны. В нижней зоне камеры...
Тип: Изобретение
Номер охранного документа: 0002767108
Дата охранного документа: 16.03.2022
+ добавить свой РИД