×
12.01.2017
217.015.5c94

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО КОЭФФИЦИЕНТА ВНЕШНЕГО ТРЕНИЯ

Вид РИД

Изобретение

Аннотация: Использование: механические испытания материалов, в частности определение динамического коэффициента внешнего трения. Для определения динамического коэффициента внешнего трения используются два образца, нижний из которых закрепляют на платформе, способной поворачиваться относительно горизонтальной оси подвески в вертикальной плоскости. Плоскую рабочую поверхность платформы располагают параллельно оси подвески и перпендикулярно плоскости, проходящей через ось подвески и геометрический центр рабочей поверхности платформы. Верхний образец свободно устанавливают на поверхности нижнего, платформу с образцами отклоняют из нижнего положения на некоторый угол θ и отпускают для свободного движения по закону физического маятника. На пути платформы помещают упор, останавливающий ее вместе с нижним образцом в нижнем горизонтальном положении. После измерения пути S, по инерции пройденного верхним образцом на поверхности нижнего, определяют динамический коэффициент внешнего трения по формуле. Техническим результатом является возможность определения динамического коэффициента внешнего трения при ограниченных габаритах образцов одинаковой формы без измерения сил трения путем использования принципа равенства между кинетической энергией образца, движущегося с определенной начальной скоростью, и работой силы трения, совершаемой в процессе относительного перемещения образца до полной его остановки. 1 ил.

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов.

Известны способы определения динамического коэффициента внешнего трения, состоящие в непосредственном измерении силы трения на образцах при их взаимном перемещении.

Недостатком таких способов является необходимость применения силоизмерительных механизмов, усложняющих применяемые устройства.

Существуют способы и устройства, позволяющие исключить непосредственное измерение силы при определении динамического коэффициента трения, основанные на законах механики, определяющих соотношение между силой тяжести подвижного образца и углом наклона испытательной системы. Например, известен способ определения динамического коэффициента внешнего трения скольжения при наклоне двух расположенных друг на друге образцов, нижний из которых, имеющий форму диска, приводят во вращение вокруг своей оси и наклоняют относительно горизонта, удерживая верхний образец в том месте диска, где его линейная скорость направлена вверх по уклону, при этом динамический коэффициент трения определяют по текущему значению угла наклона φ в тот момент, когда верхний образец начинает соскальзывать вниз [патент РФ №2458336, G01N 19/02, опубл. 10.08.2012].

Недостатком этого способа определения коэффициента трения является необходимость больших габаритов приводящегося во вращение образца, что трудно обеспечить при исследовании некоторых материалов с особыми свойствами.

Известен также выбранный в качестве прототипа способ определения динамического коэффициента внешнего трения между двумя расположенными друг на друге образцами, нижний из которых имеет цилиндрическую или сферическую вогнутую рабочую поверхность. Поворачивая образцы относительно горизонтальной оси, измеряют угол наклона φ1 относительно вертикали, при котором происходит соскальзывание верхнего образца, и угол φ2, при котором соскальзывание образца завершается, по значениям углов φ1 и φ2, исходя из равенства работы, совершаемой силой трения при соскальзывании верхнего образца, сопутствующему изменению потенциальной энергии верхнего образца, меняющего положение по вертикали, рассчитывают динамический коэффициент внешнего трения как , где k - расчетный поправочный коэффициент, учитывающий несовпадение центра тяжести верхнего образца с рабочей поверхностью нижнего образца [патент РФ №2537745, G01N 19/02, опубл. 10.01.2015].

К числу недостатков способа относится необходимость использования, по крайней мере у одного из образцов, достаточно протяженной и обязательно криволинейной, с постоянным радиусом, рабочей поверхности, что усложняет технику эксперимента, а при наличии только плоских образцов исключает возможность его проведения. Помимо этого выбранный в качестве прототипа способ обладает систематической погрешностью, для компенсации которой требуются дополнительные действия по определению поправочного коэффициента.

Техническим результатом предлагаемого технического решения является возможность определения динамического коэффициента внешнего трения при ограниченных габаритах образцов одинаковой формы без измерения сил трения, путем использования принципа равенства между кинетической энергией образца, движущегося с определенной начальной скоростью, и работой силы трения, совершаемой в процессе относительного перемещения образца до полной его остановки.

Для достижения технического результата используют два образца, расположенных друг на друге, при этом нижний образец закрепляют в центре платформы, способной поворачиваться относительно горизонтальной оси подвески. Плоскую рабочую поверхность платформы располагают параллельно оси подвески, перпендикулярно плоскости, проходящей через ось подвески и геометрический центр рабочей поверхности платформы. Верхний образец свободно устанавливают на поверхности нижнего, отклоняют платформу с образцами от вертикального положения на некоторый угол θ и отпускают для свободного движения под действием силы тяжести по закону физического маятника. На пути движения платформы помещают упор, останавливающий ее вместе с закрепленным на ней нижним образцом в момент, когда платформа принимает нижнее положение. После остановки измеряют путь S, который по инерции проходит верхний образец по остановившейся в горизонтальном положении поверхности нижнего образца. Динамический коэффициент внешнего трения определяют по формуле

,

где θ - угол отклонения платформы от вертикального положения;

l - расстояние от центра тяжести верхнего образца до точки подвески платформы;

g - ускорение свободного падения;

Т - период колебаний платформы с образцами, определяемый в дополнительном опыте в процессе свободных колебаний, совершаемых ею без ограничения движения упором при отведении на такой же угол θ от вертикального положения.

С момента встречи платформы с препятствием и остановки нижнего образца верхний образец, двигаясь по инерции, проходит на поверхности нижнего некоторый путь, преодолевая силу трения, пропорциональную его весу и динамическому коэффициенту внешнего трения, и совершает работу, пропорциональную пройденному пути. Динамический коэффициент внешнего трения определяют из условия равенства кинетической энергии верхнего образца, движущегося в момент столкновения с известной скоростью, работе, которую производит, преодолевая силу трения, образец при перемещении после столкновения.

На фиг. 1 показана схема реализации предлагаемого способа экспериментального определения динамического коэффициента внешнего трения, объединенная со схемой действующих на образец усилий, где:

1 - нижний образец;

2 - верхний образец;

3 - платформа;

4 - ось подвески;

5 - упор.

Для определения динамического коэффициента внешнего трения используют два образца (фиг. 1), нижний 1 и верхний 2. Нижний образец 1 устанавливают и закрепляют на выполненной в виде физического маятника платформе 3, способной совершать свободные колебания относительно горизонтальной оси подвески 4. Рабочую поверхность платформы 3 располагают параллельно оси подвески 4 и перпендикулярно плоскости, проходящей через ось подвески 4 и геометрический центр рабочей поверхности платформы 3. На пути движения платформы 3 устанавливают жесткое препятствие в виде упора 5, способное остановить движение платформы 3 в ее нижнем положении. При отсутствии упора 5 платформа 3 может совершать колебательные движения относительно оси подвески 4 под действием собственного веса и веса установленных на ней образцов.

Определение динамического коэффициента внешнего трения производят в следующем порядке. Платформу 3 с нижним образцом 1 и верхним образцом 2 отклоняют от вертикального положения на некоторый фиксированный угол θ и отпускают, после чего она начинает свободное движение по закону гармонических колебаний. Предварительно на пути платформы 3 размещают упор 5, который останавливает ее движение в момент достижения нижнего положения, при котором рабочая поверхность нижнего образца 1 и вектор скорости верхнего образца 2 направлены горизонтально. К этому моменту движущаяся по закону физического маятника система приобретает некоторую угловую скорость ω, а линейная скорость верхнего образца 2, центр тяжести которого конструктивно находится на некотором расстоянии l от точки подвески 4, составит v=ωl. После остановки платформы 3 и закрепленного на ней нижнего образца 7 верхний образец 2, двигаясь по инерции, скользит по поверхности нижнего образца 1 и проходит некоторый путь S, зависящий от достигнутой скорости и величины динамического коэффициента трения. Если величина этого пути больше или меньше оптимального значения, обусловленного размерами образцов, опыт повторяют, изменяя скорость образцов вариацией угла θ между исходным и нижним положениями платформы 3. В конечном счете, определяют угол θ, при котором проходимый верхним образцом 2 путь S оптимален, и фиксируют значение пути, соответствующее данному углу.

Проходя по инерции путь S, верхний образец 2 совершает работу, обусловленную наличием силы трения Fтр. В момент столкновения платформы 3 с упором 5 рабочая поверхность нижнего образца 1 и вектор скорости верхнего образца 2 направлены горизонтально, поэтому силу трения можно определить как

Fтр=Mgfдин,

где g - ускорение свободного падения; fдин - динамический коэффициент трения.

Работа, которая совершается верхним образцом 2 в процессе скольжения до полной остановки, находится по формуле

A=Fтр·S=Mgfдин,

где S - путь, пройденный верхним образцом 2.

Исходя из закона сохранения энергии совершенная работа и начальная кинетическая энергия верхнего образца 2 равны между собой. Кинетическая энергия верхнего образа 2, имеющего массу М, равна

Таким образом,

,

что дает основание записать выражение для определения динамического коэффициента трения в виде

Для определения динамического коэффициента трения по формуле (1) используется величина линейной скорости v верхнего образца 2, связь которой с параметрами колебательного движения платформы 3 определяется теорией гармонических колебаний. При небольших углах колебания θ (менее 15°) с погрешностью менее 0,5%, допустимой при определении коэффициента трения, движение платформы 3 описывается уравнением [Джанколи Д. Физика: В 2-х т. Т. 1: Пер. с англ. - М.: Мир, 1989, с. 410]

,

где θт - текущее угловое отклонение оси маятника от вертикального положения; θ - максимальное угловое отклонение оси маятника; t - текущее время процесса, прошедшее от начала колебаний; Т - период колебаний; φ - некоторая начальная фаза колебаний.

Угловая скорость ω колеблющегося маятника определяется как производная текущего угла поворота θт

.

Как следует из полученной формулы, угловая скорость системы также изменяется по закону гармонических колебаний, достигая максимального по абсолютной величине значения при нижнем положении платформы 3 с образцами, т.е. при . Таким образом, максимальная угловая скорость системы в нижнем положении платформы составляет

С помощью полученной формулы находят максимальную линейную скорость центра тяжести верхнего образца 2

где l - расстояние от оси подвески 4, являющейся центром поворота, до центра тяжести верхнего образца 2, определяемое конструктивно.

Использованием полученного выражения позволяет, не производя сложное измерение скорости верхнего образца 2 в момент соударения, определять ее простым расчетно-экспериментальным путем. Для этого проводят дополнительный опыт по определению периода колебаний Т, во время которого упор 5 убирают, а платформу 3 с образцами приводят в колебательное движение из того же исходного положения с углом отклонения θ. Период колебаний Т находят, определяя при помощи хронометража продолжительность одного цикла колебаний. Для повышения точности результата определяют суммарную продолжительность t некоторого числа n полных циклов колебаний, а величину периода колебаний находят по формуле

.

После нахождения значения Т с использованием формулы (2) определяют скорость верхнего образца 2 в момент столкновения. С учетом формул (1) и (2) определяют динамический коэффициент внешнего трения

.

Для расчета коэффициента внешнего трения величину исходного угла отклонения платформы θ определяют в радианах, период колебаний платформы с образцами Т - в секундах, величину смещения S верхнего образца 2 по поверхности нижнего образца 1 и расстояние l от точки подвески 4 платформы 5 до центра тяжести верхнего образца 2 - в метрах, величину ускорения свободного падения принимают равной g=9,8 м/с2.

Предлагаемый способ определения динамического коэффициента внешнего трения, реализуемый при малых скоростях относительно перемещения, наиболее целесообразен для статических систем с крепежными элементами и другими неподвижными соединениями, основанными на использовании сил трении, в которых велика вероятность нарушения относительной неподвижности вследствие внешних вибраций или ударных нагрузок и надежность системы должна оцениваться с учетом динамического коэффициента трения, который у большинства материалов уступает по величине статическому. Достоинством способа является возможность его реализации с использованием образцов весьма малых размеров, таких же, как и при определении статического коэффициента внешнего трения. Используемая для реализации способа оснастка универсальна, с ее помощью может определяться не только динамический, но и статический коэффициент внешнего трения. Для этого платформу 3 с образцами постепенно отклоняют от вертикального положения, увеличивая угол θ, до того момента, при котором произойдет соскальзывание верхнего образца 2, а по определенному в момент соскальзывания верхнего образца 2 предельному углу рассчитывают статический коэффициент внешнего трения по известной формуле.

Способ определения динамического коэффициента внешнего трения при относительном перемещении двух образцов, расположенных друг на друге, отличающийся тем, что нижний образец закрепляют в центре платформы, способной поворачиваться относительно горизонтальной оси подвески, плоскую рабочую поверхность платформы располагают перпендикулярно плоскости, проходящей через ось подвески и геометрический центр рабочей поверхности платформы, верхний образец свободно устанавливают на поверхности нижнего, отклоняют платформу с образцами от вертикального положения на угол θ и отпускают для свободного движения под действием силы тяжести по закону физического маятника, на пути движения платформы помещают упор, останавливающий ее вместе с нижним образцом в нижнем горизонтальном положении, измеряют путь S, который проходит по инерции верхний образец, и определяют динамический коэффициент внешнего трения по формуле где θ - угол отклонения платформы от вертикального положения;l - расстояние от центра тяжести верхнего образца до точки подвески платформы;g - ускорение свободного падения;Т - период колебаний платформы с образцами, определяемый в дополнительном опыте в процессе свободных колебаний, совершаемых ею без ограничения движения упором при отведении на такой же угол θ от вертикального положения.
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО КОЭФФИЦИЕНТА ВНЕШНЕГО ТРЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО КОЭФФИЦИЕНТА ВНЕШНЕГО ТРЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО КОЭФФИЦИЕНТА ВНЕШНЕГО ТРЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 811.
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3160

Прижимной механизм

Изобретение относится к специальным контейнерам, в частности к механизмам удержания, обеспечивающим надежное и быстрое закрепление опасного груза в стесненных габаритных условиях. Техническим результатом является обеспечение быстрого и надёжного закрепления груза в стеснённых габаритных...
Тип: Изобретение
Номер охранного документа: 0002645022
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3ba8

Устройство для определения чувствительности расплава взрывчатых веществ к ударно-волновому воздействию

Изобретение относится к области исследования свойств взрывчатых веществ. Устройство содержит соосно установленные в вертикальной направляющей кювету для исследуемого образца ВВ, инертную преграду, источник ударно-волнового воздействия и средство инициирования, кювета расположена на защитном...
Тип: Изобретение
Номер охранного документа: 0002647453
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3ddb

Замедляющая система

Изобретение относится к электронной технике, в частности к замедляющим системам для СВЧ приборов с длительным взаимодействием. Технический результат - расширение полосы пропускания, увеличение коэффициента замедления и расширение функциональных возможностей. Замедляющая система содержит...
Тип: Изобретение
Номер охранного документа: 0002648235
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3e3c

Стенд для лайнерных исследований

Изобретение относится к устройствам преобразования энергии взрывчатого вещества в электромагнитную энергию и может быть использовано для исследования свойств материалов в цилиндрической геометрии при ударном и квазиизэнтропическом нагружении лайнером, приводимым в движение сильным магнитным...
Тип: Изобретение
Номер охранного документа: 0002648248
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3f3d

Способ управления объектами путем скрытого идентифицирующего подобия

Изобретение относится к области идентификации технических средств путем использования их уникальных индивидуальных параметров. Технический результат заключается в обеспечении достоверного управления техническими объектами и формирования уникального идентифицирующего признака, присущего только...
Тип: Изобретение
Номер охранного документа: 0002648623
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.40f1

Многоканальная волоконно-оптическая система для синхронного запуска регистраторов

Изобретение относится к области регистрации импульсных сигналов и касается многоканальной волоконно-оптической системы для синхронного запуска регистраторов. Система включает в себя передающий блок с одним электрическим пусковым входом и несколькими оптическими выходами, приемные блоки и...
Тип: Изобретение
Номер охранного документа: 0002649079
Дата охранного документа: 29.03.2018
Показаны записи 291-300 из 308.
17.02.2018
№218.016.2c97

Комбинированный взрывной заряд

Изобретение относится к области взрывной техники, а именно к конструированию взрывных зарядов на основе бризантных взрывчатых веществ. Комбинированный взрывной заряд из бризантного взрывчатого вещества выполнен с центральным осевым каналом, который заполнен композицией на основе неорганических...
Тип: Изобретение
Номер охранного документа: 0002643844
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2d23

Устройство для герметичного прохода кабельных линий через стенку

Изобретение относится к электротехнике и может быть использовано для герметичного прохода кабельных линий через стенку, в частности через переборку судового отсека глубоководного аппарата, разделенную переменной воздушно-водной средой. Устройство для герметичного прохода кабельных линий через...
Тип: Изобретение
Номер охранного документа: 0002643781
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2e14

Система корректировки траекторий потока заряженных частиц

Изобретение относится к области ускорительной техники, физике плазмы, а именно к устройствам корректировки траекторий потоков заряженных частиц, и может быть использовано в атомной физике, медицине, химии, физике твердого тела. Система корректировки траекторий потока заряженных частиц содержит...
Тип: Изобретение
Номер охранного документа: 0002643507
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3160

Прижимной механизм

Изобретение относится к специальным контейнерам, в частности к механизмам удержания, обеспечивающим надежное и быстрое закрепление опасного груза в стесненных габаритных условиях. Техническим результатом является обеспечение быстрого и надёжного закрепления груза в стеснённых габаритных...
Тип: Изобретение
Номер охранного документа: 0002645022
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
18.05.2018
№218.016.5072

Способ электроэрозионной обработки

Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей. В способе электроэрозионную обработку осуществляют при вращении двух соединенных с токоподводами электродов, один из электродов...
Тип: Изобретение
Номер охранного документа: 0002653041
Дата охранного документа: 04.05.2018
21.11.2018
№218.016.9f62

Способ определения коэффициентов трения скольжения и покоя

Изобретение относится к области механических испытаний материалов, в частности к определению коэффициента трения между образцами. Сущность: один из образцов, закрепляемый неподвижно, изготавливают с рабочей поверхностью, имеющей прямолинейную или вогнутую круговую форму. На некотором расстоянии...
Тип: Изобретение
Номер охранного документа: 0002672809
Дата охранного документа: 19.11.2018
+ добавить свой РИД