×
12.01.2017
217.015.5b95

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОГО КАТОДА ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления холодных катодов гелий-неоновых лазеров и может быть использовано в газоразрядной технике и микроэлектронике. Способ включает в себя нагрев заготовок катода из алюминия в вакууме не ниже 10 мм рт.ст. и последующее термическое окисление ее поверхности, отличающийся тем, что заготовку катода из химически чистого алюминия нагревают в кислороде со скоростью 200°C/час до температуры, равной 300-350°C, выдерживают при данной температуре в течение 1,5 часа и затем охлаждают до комнатной температуры с той же скоростью. Указанный режим термического окисления обеспечивает получение приемлемой толщины окисного покрытия при минимально возможном количестве сквозных пор. Повышение срока службы холодного катода гелий-неонового лазера является техническим результатом изобретения. 1 ил.

Изобретение относится к технологии изготовления холодных катодов гелий-неоновых лазеров и может быть использовано в газоразрядной технике.

Одна из важных проблем, возникающих при изготовлении холодных катодов гелий-неоновых лазеров, заключается в необходимости обеспечения их стабильной работы в течение более 50 тыс часов. Это достигается, в частности, созданием на поверхности холодного катода активного элемента лазера защитного окисного покрытия. Такое покрытие должно, в свою очередь, обладать высокой вторично-эмиссионной способностью и однородностью электрофизических свойств.

Известны различные способы нанесения окисных покрытий испарением в вакууме соответствующих материалов (Технология тонких пленок. Справочник под редакцией Л. Майссела, Р. Глэнга. - М.: Советское радио, 1977. - Т. 1-2).

Однако использование данных способов затруднительно при формировании окисных покрытий на изделиях сложной формы с протяженной внутренней рабочей поверхностью.

Известен способ формирования окисных покрытий на поверхности холодных катодов из алюминия и его сплавов в плазме тлеющего разряда (Трофимов Е.А и др. Получение защитных окисных пленок на полых катодах в тлеющем разряде кислорода. - Электронная техника. Сер. 6. Материалы. - 1973. - Вып. 12. - С. 3-10).

Однако использование указанного способа при изготовлении катодов цилиндрической формы затруднено. Данное обстоятельство связано, во-первых, с особенностями распределения тока по поверхности катода. Эти распределения, контролируемые в разряде инертных газов и в смесях, содержащих кислород, существенно отличаются. При этом максимально окисленные участки катода не совпадают с зонами наибольшей токовой нагрузки в активных элементах лазеров.

Во-вторых, окисные покрытия, полученные в режиме катодного окисления, обладают высокой дефектностью, вызванной распылением потенциально «слабых» участков формируемых покрытий.

Наиболее близким способом того же назначения к заявляемому объекту по совокупности признаков является способ изготовления холодного катода гелий-неонового лазера, включающий нагрев заготовки катода из алюминия в вакууме не ниже чем 5·10-5 мм рт. ст. и последующее термическое окисление ее поверхности (Киселева Л.И., Косенкова О.Я., Крютченко О.Н. и др. Способ изготовления активного элемента газового лазера с холодным катодом. - Патент РФ №2012943, 1994 г. - прототип).

К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, принятого за прототип, относится то, что он не обеспечивает полное исключение дефектов окисных покрытий в виде сквозных пор, сформированных на различных металлических основах, например, на поверхности химически чистого алюминия.

Появление сквозных пор связано со структурными и фазовыми неоднородностями поверхности материала катода. В газовом разряде сквозные поры из-за зарядки поверхности окисного покрытия превращаются в электростатические микролинзы, фокусирующие ионный поток. В результате площадь пор подвергается усиленному распылению, который лимитирует ресурс работы катодов.

Задачей данного изобретения является повышение срока службы холодного катода гелий-неонового лазера.

Данный технический результат достигается при осуществлении изобретения тем, что в известном способе изготовления холодного катода гелий-неонового лазера, включающем нагрев заготовок катода из алюминия в вакууме не ниже 5·10-5 мм рт.ст. и последующее термическое окисление ее поверхности, заготовку катода из химически чистого алюминия нагревают в кислороде со скоростью 200°C/час до температуры, равной 300-350°C, выдерживают при данной температуре в течение 1,5 часа и затем охлаждают до комнатной температуры с той же скоростью.

Вышеизложенный технический результат достигается за счет выбора оптимального режима термического окисления поверхности заготовок катода из химически чистого алюминия, реализуемого при их нагреве со скоростью 200°C/час до достижения максимальной температуры, равной 300-350°C. В этом случае обеспечивается приемлемая толщина окисного покрытия при минимально возможном количестве сквозных пор.

Положительный эффект от использования изобретения обусловлен повышением долговечности холодного катода из химически чистого алюминия за счет получения на его поверхности малодефектного окисного покрытия, обладающего стабильными вторично-эмиссионными свойствами.

Таким образом, сопоставительный анализ предложенного технического решения и уровня техники позволил установить, что заявленное изобретение соответствует требованию "новизна" и "изобретательский уровень" по действующему законодательству.

Предложенный способ изготовления холодного катода гелий-неонового лазера поясняется фиг. 1, на которой приведена зависимость средней пористости (кривая 1) и толщины (кривая 2) окисных покрытий, получаемых на поверхности заготовок катодов из химически чистого алюминия, от максимальной температуры окисления.

Способ реализуется следующим образом. Изготавливают заготовку катода требуемой формы из химически чистого алюминия (например, марки А99), подвергают ее химической обработке для удаления остатков масел и верхнего нарушенного слоя. Затем заготовку катода помещают в специальную стеклянную колбу, имеющую изолированный анодный электрод, которую откачивают до вакуума не хуже чем 5·10-5 мм рт. ст., нагревают до температуры 350-400°C и выдерживают при данной температуре в течение 1,0-2,0 часов. После этого колбу охлаждают до комнатной температуры, напускают в нее кислород до давления 2-3 мм рт. ст. и нагревают со скоростью 200°C/час до температуры, равной 300-350°C, выдерживают колбу при данной температуре в течение 1,5 часа и затем охлаждают до комнатной температуры с той же скоростью.

Затем колбу заполняют неоном до давления 3,0 мм. рт. ст. и зажигают тлеющий разряд между изготовленным катодом и анодом. Качество изготовленных окисных покрытий катодов оценивают по уровню напряжения поддержания разряда.

Зависимость суммарной пористости окисных покрытий, сформированных на поверхности катодов из алюминия марки А99, от температуры окисления представлена на фиг. 1. Ее анализ показывает, что окисление катодов, осуществляемое по предлагаемому способу, обеспечивает минимальную пористость покрытий при их толщине, равной 20-25 нм. Данное обстоятельство способствуют повышению устойчивости поверхности холодных катодов в газовом разряде (сквозная пора - участок катода, подвергающийся избирательной усиленной ионной бомбардировке).

Наблюдаемый положительный эффект связан с особенностями термического окисления катодов из алюминия марки А99. При температуре окисления, меньшей 300°C, толщина покрытия не превышает 20,0 нм, что ограничивает долговечность катода. При температуре, превышающей 350°C, наблюдается резкий рост пористости покрытий. Данное обстоятельство обусловлено растрескиванием покрытий из-за их частичной кристаллизации. Выдержка заготовок катодов при максимальной температуре составляет 1,5 часа. Дальнейшее увеличение этого времени не приводит к дополнительному росту толщины покрытий и поэтому нецелесообразно.

Поддержание скорости нагрева заготовок катодов меньшей 200°C/час приводит к увеличению продолжительности процесса. Увеличение же скорости нагрева заготовок в диапазоне от 210 до 250°C/час сопровождается дополнительным ростом пористости покрытий на 3-10% из-за возникающих в них внутренних напряжений.

Прямые испытания предлагаемых холодных катодов из химически чистого алюминия в активных элементах гелий-неоновых лазеров показали увеличение времени их стабильной работы на 45-50%.

Способ изготовления холодного катода гелий-неонового лазера, включающий нагрев заготовок катода из алюминия в вакууме не ниже 5·10 мм рт.ст. и последующее термическое окисление ее поверхности, отличающийся тем, что заготовку катода из химически чистого алюминия нагревают в кислороде со скоростью 200°С/час до температуры, равной 300-350°С, выдерживают при данной температуре в течение 1,5 часа и затем охлаждают до комнатной температуры с той же скоростью.
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОГО КАТОДА ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОГО КАТОДА ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 95.
27.04.2016
№216.015.3957

Адаптивный вычислитель для режектирования помех

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех. Достигаемый технический результат - осуществление режектирования пассивных помех с априорно неизвестными...
Тип: Изобретение
Номер охранного документа: 0002582874
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39e6

Вычислитель для адаптивного режектирования помех

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002582871
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3a5f

Транзистор с металлической базой

Использование: для усиления, генерации и преобразования электрических сигналов. Сущность изобретения заключается в том, что транзистор с металлической базой, содержащий эмиттер, базу из материала с металлической проводимостью и коллектор, при этом между эмиттером и базой сформирован барьер...
Тип: Изобретение
Номер охранного документа: 0002583866
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3db4

Автокомпенсатор доплеровской фазы пассивных помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Достигаемый технический результат - повышение точности автокомпенсации. Указанный результат достигается тем, что автокомпенсатор доплеровской фазы пассивных помех...
Тип: Изобретение
Номер охранного документа: 0002583537
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.41a9

Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с...
Тип: Изобретение
Номер охранного документа: 0002584179
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.61d2

Способ рафинирования металлургического кремния

Изобретение относится к области очистки кремния, пригодного для изготовления солнечных элементов, полупроводниковых приборов, МЭМС устройств, а также использования в химической и фармацевтической промышленности. Способ рафинировании кремния, находящегося в твердой фазе, производят в графитовом...
Тип: Изобретение
Номер охранного документа: 0002588627
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.778a

Адаптивный режектор пассивных помех

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах когерентно-импульсных радиолокационных систем для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002599621
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7901

Способ изготовления электродов электронных приборов

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и...
Тип: Изобретение
Номер охранного документа: 0002599389
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c6b

Обнаружитель-измеритель когерентно-импульсных радиосигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002600111
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
Показаны записи 71-80 из 114.
20.04.2016
№216.015.349f

Способ повышения точности полезного сигнала кольцевого лазера

Изобретение относится к гироскопам. Способ повышения точности полезного сигнала кольцевого лазера заключается в том, что обеспечивают вращательные колебания корпуса планарного оптического резонатора относительно корпуса гироскопа с помощью вибрационной частотной подставки, работающей на...
Тип: Изобретение
Номер охранного документа: 0002581396
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.38ed

Адаптивный компенсатор фазы пассивных помех

Изобретение относится к вычислительной технике и может быть использовано в адаптивных устройствах режектирования многочастотных пассивных помех. Достигаемый технический результат - повышение точности адаптивной компенсации текущего значения доплеровской фазы многочастотных пассивных помех....
Тип: Изобретение
Номер охранного документа: 0002582877
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38f6

Способ обнаружения заданного механического воздействия для идентификации пользователя и устройство для его осуществления

Изобретение относится к средствам распознавания механического воздействия с использованием электронных средств. Техническим результатом является повышение безопасности при идентификации пользователя. Способ основан на сравнении на интервале времени анализа бинарного кода, формируемого из...
Тип: Изобретение
Номер охранного документа: 0002582865
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.394b

Способ увеличения полосы захвата системы фазовой автоподстройки частоты с знаковым логическим фазовым дискриминатором и устройство для его реализации

Изобретение относится к области радиотехники. Tехнический результат - расширение полосы захвата путем изменения симметричной формы дискриминационной характеристики знакового логического фазового дискриминатора в асимметричную, а при увеличении зоны положительного или отрицательного знака...
Тип: Изобретение
Номер охранного документа: 0002582878
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3957

Адаптивный вычислитель для режектирования помех

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех. Достигаемый технический результат - осуществление режектирования пассивных помех с априорно неизвестными...
Тип: Изобретение
Номер охранного документа: 0002582874
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39e6

Вычислитель для адаптивного режектирования помех

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002582871
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3a5f

Транзистор с металлической базой

Использование: для усиления, генерации и преобразования электрических сигналов. Сущность изобретения заключается в том, что транзистор с металлической базой, содержащий эмиттер, базу из материала с металлической проводимостью и коллектор, при этом между эмиттером и базой сформирован барьер...
Тип: Изобретение
Номер охранного документа: 0002583866
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3db4

Автокомпенсатор доплеровской фазы пассивных помех

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Достигаемый технический результат - повышение точности автокомпенсации. Указанный результат достигается тем, что автокомпенсатор доплеровской фазы пассивных помех...
Тип: Изобретение
Номер охранного документа: 0002583537
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.41a9

Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с...
Тип: Изобретение
Номер охранного документа: 0002584179
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.61d2

Способ рафинирования металлургического кремния

Изобретение относится к области очистки кремния, пригодного для изготовления солнечных элементов, полупроводниковых приборов, МЭМС устройств, а также использования в химической и фармацевтической промышленности. Способ рафинировании кремния, находящегося в твердой фазе, производят в графитовом...
Тип: Изобретение
Номер охранного документа: 0002588627
Дата охранного документа: 10.07.2016
+ добавить свой РИД