×
12.01.2017
217.015.5b19

Результат интеллектуальной деятельности: СПОСОБ ГЕНЕРИРОВАНИЯ МОДУЛИРОВАННОГО КОРОННОГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области генерирования в атмосферном воздухе низкотемпературной плазмы. Способ генерирования модулированного коронного разряда заключается в том, что в разрядном промежутке, образованном анодом и катодом, с резко неоднородным распределением электрического поля как в области анода, так и катода, создают линейный коронный факельный разряд. Собственный объемный заряд, формируемый в разрядном промежутке, нейтрализуют путем импульсно-периодических срезов импульса напряжения с наносекундной длительностью, причем частоту модуляции напряжения на катоде регулируют от 20 кГц и выше. Устройство содержит высоковольтный источник квазинепрерывного тока, анод и катод, выполненные, например, в виде нихромовых нитей. Анод соединен с положительным выводом источника непосредственно, а катод соединен с отрицательным выводом источника через управляемый коммутатор. Технический результат - повышение величины среднего значения разрядного тока, а также повышение мощности, вкладываемой в разрядный промежуток. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области генерирования в больших объемах атмосферного воздуха естественной влажности низкотемпературной плазмы (НТП). Изобретения могут быть использованы для формирования широкоапертурных газовых потоков, модификации поверхностей термически чувствительных и композиционных материалов, очистки воздуха и воды от вредных газов, примесей и микроорганизмов, а также в других технологических процессах, связанных с применением НТП с предельно высокой концентрацией носителей зарядов.

Известен способ генерирования коронного разряда (Богданова Н.Б., Певчев Б.Г. Факельный разряд при постоянном напряжении // Электричество, 1978, №12, с. 5-9), формируемого в больших объемах атмосферного воздуха, когда переход от положительной короны к искровому пробою осуществляется через стадию, при которой зона ионизации распространяется до катода и возникает так называемый «факельный» разряд. Факельный разряд инициируется на аноде. В зависимости от конструкции анода необходимое для возбуждения разряда сильное электрическое поле может создаваться при осаждении на внешнюю поверхность анода отрицательного заряда или может использоваться внешний источник отрицательных зарядов - нагретая спираль или коронирующий электрод.

Основными недостатками известного способа являются низкая величина среднего значения разрядного тока и, соответственно, низкая мощность генерируемого коронного разряда, обусловленные переходом факельного разряда в искровой пробой при попытке увеличения тока разряда за счет увеличения средней напряженности электрического поля в разрядном промежутке.

Известен также способ генерирования линейного коронного факельного разряда (Ашмарин Г.В., Лелевкин В.М., Токарев А.Б. Формирование линейного коронного факельного разряда // Физика плазмы, 2002, том 28, №10, с. 939-944). Способ заключается в том, что в потоке атмосферного воздуха в разрядном промежутке, образованном анодом и катодом, с резко неоднородным распределением электрического поля в области анода, к аноду прикладывают высокое напряжение положительной полярности до возникновения линейного коронного факельного разряда, а формируемый между электродами собственный объемный заряд нейтрализуют путем импульсно-периодических срезов импульсов напряжения на катоде разрядного промежутка с частотой, определяемой частотой срабатывания искрового разрядника.

Недостатками известного способа являются низкая величина среднего значения разрядного тока и, соответственно, низкая мощность, вкладываемая в разряд, обусловленные низкой частотой срабатывания искрового разрядника.

Известно устройство для генерирования линейного коронного факельного разряда (Ашмарин Г.В., Лелевкин В.М., Токарев А.Б. Формирование линейного коронного факельного разряда // Физика плазмы, 2002, том 28, №10, с. 939-944). Устройство содержит высоковольтный источник квазинепрерывного тока, образованный высоковольтным источником напряжения, на выходе которого установлен индуктивный дроссель, а также анод и катод. При этом анод может быть выполнен в виде нихромового провода или острия, а катод - в виде плоскости, или же анод - в виде провода, а катод - в виде цилиндра. Причем анод соединен с положительным выводом высоковольтного источника квазинепрерывного тока непосредственно, а катод соединен с отрицательным выводом высоковольтного источника квазинепрерывного тока через искровой разрядник.

Недостатком известного устройства является низкая мощность линейного коронного факельного разряда (ЛКФР) из-за низкой частоты срабатывания искрового разрядника. Другими недостатками известного устройства являются низкий ресурс, надежность и стабильность работы искрового разрядника.

Наиболее близким к предлагаемому является способ генерирования импульсно-периодического коронного разряда (Гречухин А.А., Лелевкин В.М., Смирнова Ю.Г., Токарев А.В. Высоковольтные источники питания плазмохимических реакторов для синтеза озона // Вестник КРСУ. 2009. Том 9, №11, с. 36-45). Способ заключается в том, что в потоке воздуха атмосферного давления и естественной влажности в разрядном промежутке, образованном анодом и катодом, с резко неоднородным распределением электрического поля в области анода, к аноду от положительного вывода высоковольтного источника квазинепрерывного тока прикладывают напряжение, величина средней напряженности которого в разрядном промежутке достаточна для возникновения линейного коронного факельного разряда, а формируемый в разрядном промежутке собственный объемный заряд нейтрализуют путем импульсно-периодических срезов импульсов напряжения на катоде электродной системы.

Наиболее близким к предлагаемому является устройство для генерирования импульсно-периодического коронного разряда (Гречухин А.А., Лелевкин В.М., Смирнова Ю.Г., Токарев А.В. Высоковольтные источники питания плазмохимических реакторов для синтеза озона // Вестник КРСУ. 2009. Том 9, №11, с. 36-45). Устройство содержит высоковольтный источник квазинепрерывного тока, образованный высоковольтным источником напряжения, на выходе которого установлен индуктивный дроссель, а также анод и катод, образующие разрядный промежуток с резко неоднородным распределением электрического поля в области анода. Это обеспечивается, например, выполнением анода в виде нихромового провода и плоского катода или однорядного (многорядного) игольчатого анода и плоского катода, или в виде разрядного контура коаксиальной геометрии в системе электродов «проводник-цилиндр». При этом анод соединен с положительным выводом высоковольтного источника квазинепрерывного тока непосредственно, а катод соединен с отрицательным выводом высоковольтного источника квазинепрерывного тока через управляемый коммутатор. Частота включения управляемого коммутатора может изменяться от 1 до 20 кГц.

Недостатками известного способа и устройства, взятых в качестве прототипов, являются низкая величина среднего значения разрядного тока и, соответственно, низкая мощность генерируемого коронного разряда.

Известно, что для всех видов и форм коронного разряда характерным является одно общее свойство: максимальная интенсивность разряда (сила тока коронного разряда) определяется собственным объемным зарядом, созданным в зоне ионизации и заполняющим, в результате движения объемного разряда в электрическом поле короны, ее внешнюю сторону. При этом очевидно, что сила тока коронного разряда может быть увеличена путем периодической нейтрализации собственного объемного заряда. Также очевидно, что сила тока коронного разряда растет с увеличением частоты нейтрализации собственного объемного заряда.

Задачей изобретений является повышение эффективности генерирования низкотемпературной плазмы (НТП).

Техническим результатом является повышение величины среднего значения разрядного тока, а также повышение мощности, вкладываемой в разрядный промежуток за счет формирования особого типа коронного разряда - модулированного коронного наносекундного разряда (МКНР).

Поставленная задача достигается тем, что в способе генерирования модулированного коронного разряда, заключающемся в том, что в потоке воздуха атмосферного давления и естественной влажности в разрядном промежутке, образованном анодом и катодом, к аноду от положительного вывода высоковольтного источника квазинепрерывного тока прикладывают напряжение, величина которого в разрядном промежутке достаточна для возникновения линейного коронного факельного разряда, при этом в области анода создают резко неоднородное распределение электрического поля, а формируемый при этом в разрядном промежутке собственный объемный заряд нейтрализуют путем импульсно-периодических срезов импульсов напряжения на катоде электродной системы, в разрядном промежутке резко неоднородное распределение электрического поля создают как в области анода, так и в области катода, а формируемый в разрядном промежутке собственный объемный заряд нейтрализуют путем импульсно-периодических срезов импульса напряжения с наносекундной длительностью, причем частоту модуляции напряжения на катоде электродной системы регулируют от 20 кГц и выше.

Поставленная задача достигается также тем, что в устройстве, содержащем высоковольтный источник квазинепрерывного тока, образованный высоковольтным источником напряжения, на выходе которого установлен индуктивный дроссель, анод, обеспечивающий резко неоднородное распределение электрического поля и выполненный, например, в виде нихромовой нити, а также катод, причем анод соединен с положительным выводом высоковольтного источника квазинепрерывного тока непосредственно, а катод соединен с отрицательным выводом высоковольтного источника квазинепрерывного тока через управляемый коммутатор, в качестве катода используется электрод, также обеспечивающий резконеоднородное распределение электрического поля в области катода и выполненный, например, в виде нихромовой нити.

В предлагаемом способе и устройстве увеличение и регулирование от 20 кГц и выше частоты среза в наносекундном диапазоне импульсов напряжения, возникающих на катоде, при росте собственного объемного заряда, при условии, когда катод образует с анодом гипернеоднородное распределение электрического поля в разрядном промежутке, обеспечивают, как установлено экспериментально, во-первых, формирование особого типа коронного разряда - модулированного коронного наносекундного разряда (МКНР). Во-вторых, повышение величины среднего значения разрядного тока, в - третьих, регулируемое управление параметрами разряда (уровень напряжения среза, амплитуду тока разряда).

На фиг. 1 представлена схема устройства для генерирования модулированного коронного разряда. На фиг. 2 (а, б) - осциллограммы среза импульсов напряжения на катоде электродной системы и импульсов тока модулированного коронного разряда при частоте модуляции напряжения на разрядном промежутке 100 кГц.

Устройство для генерирования модулированного коронного разряда содержит высоковольтный источник 1 квазинепрерывного тока, положительный 2 и отрицательный 3 выводы источника 1, а также разрядный промежуток 4, состоящий из анода 5, выполненного в виде петли из нихромового провода, и катода 6 (верхнего и нижнего), выполненного также из нихромового провода в виде двух петель. Геометрические размеры анодной петли и двух катодных петель совпадают. Верхние и нижние эквипотенциальные провода катода 6 равноудалены от проводов анода 5 и объединены между собой электрически. Анод 5 соединен с положительным выводом 2 источника 1, а катод 6 соединен с отрицательным выводом 3 источника 1 через управляемый коммутатор 7. В качестве управляемого коммутатора 7 используется импульсный тиратрон.

Способ генерирования модулированного коронного разряда осуществляется следующим образом. В потоке атмосферного воздуха естественной влажности в разрядном промежутке 4, образованном анодом 5 и катодом 6 с резко неоднородном распределением электрического поля вблизи каждого из электродов, к аноду 5 от положительного выводы 2 высоковольтного источника 1 квазинепрерывного тока прикладывают напряжение, величина средней напряженности которого достаточна для возникновения линейного коронного факельного разряда. Таким образом осуществляется активация разрядного промежутка 4, а возникающий в области разрядного промежутка 4 объемный заряд нейтрализуют путем наносекундных по длительности срезов импульсов напряжения на катоде 6 электродной системы за счет срабатывания управляемого коммутатора 7. При этом частоту срабатывания управляемого коммутатора 7, т.е. частоту модуляции напряжения на катоде 6 электродной системы, регулируют от 20 кГц и выше.

Устройство работает следующим образом. Напряжение положительной полярности от вывода 2 высоковольтного источника 1 квазинепрерывного тока поступает на нагрузку, выполненную в виде разрядного промежутка 4, образованного анодом 5 и катодом 6, которые расположены друг относительно друга на определенном расстоянии. Причем анод 5 соединен с положительным выводом 2 высоковольтного источника 1 квазинепрерывного тока непосредственно, а катод 6 соединен с отрицательным выводом 3 высоковольтного источника 1 через управляемый коммутатор - импульсный тиратрон 7. При некотором напряжении положительной полярности, величина средней напряженности которого в разрядном промежутке 4 достаточна для возникновения линейного коронного факельного разряда, осуществляется активация разрядного промежутка 4 и формируется собственный объемный заряд. Для возникновения МКНР периодическая нейтрализация собственного объемного заряда в разрядном промежутке 4 должна выполняться при частоте модуляции напряжения на катоде 6 электродной системы, т.е. при частоте срабатывания импульсного тиратрона 7, как установлено экспериментально от 20 кГц и выше. Повышение или понижение в этом диапазоне частоты срабатывания импульсного тиратрона 7 определяет рост или, соответственно, снижение среднего значения тока в разрядном промежутке 4. При этом частоту наносекундных по длительности срезов импульсов напряжения на катоде 6, которые связаны с ростом собственного объемного заряда в разрядном промежутке 4, изменяют по алгоритму, определяемому особенностями технологических процессов, в которых используются заявленные способ и устройство.

При практической реализации устройства в качестве управляемого коммутатора использовался импульсный тиратрон ТГИ-500/16, а высоковольтный источник квазинепрерывного тока выполнен в виде высокочастотного резонансного преобразователя с выходным звеном постоянного тока. При мощности высоковольтного источника 300 Вт (выходное напряжение 50 кВ, ток 6 мА) и средней напряженности поля в разрядном промежутке ~ 8 кВ/см, как следует из осциллограмм, представленных на фиг. 2 (а, б), на частоте 100 кГц модуляции напряжения на катоде (фиг. 2а, луч 4), уровень и длительность среза напряжения на аноде тиратрона равны, соответственно, ~ 0,6 кВ (фиг. 2а, б, луч 1) и ~ 20 не (фиг. 2б, луч 2). Разрядный ток носит характер затухающих синусоидальных колебаний с частотой ~ 45 МГц, а максимальная амплитуда разрядных импульсов тока составляет ~ 1,1 А (фиг. 2б, луч 2). При максимальной средней напряженности поля в разрядном промежутке ~ 8,9 кВ/см, величина среднего значения разрядного тока, в пересчете на единицу длины коронирующего электрода (анода), выполненного в виде нихромового провода диаметром 0,3 мм, равнялась -12 мА/м, а мощность, вкладываемая в разряд, составила ~ 200 Вт.

Для сравнения, при близких геометрических параметрах нагрузки и напряженности поля в «классической» положительной короне среднее значение разрядного тока составило ~ 0,6 мА/м, а мощность, вкладываемая в разряд, ~ 3 Вт, а для ЛКФР среднее значение разрядного тока (на частоте модуляции до 20 кГц) составило ~ 6,5 мА/м, а мощность, вкладываемая в разряд, ~ 125 Вт. Таким образом, использование заявленных способа и устройства позволяет повысить величину среднего значения разрядного тока, а значит и мощность коронного разряда, что приводит к повышению эффективности различных технологических процессов, связанных с применением низкотемпературной плазмы.


СПОСОБ ГЕНЕРИРОВАНИЯ МОДУЛИРОВАННОГО КОРОННОГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ГЕНЕРИРОВАНИЯ МОДУЛИРОВАННОГО КОРОННОГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ГЕНЕРИРОВАНИЯ МОДУЛИРОВАННОГО КОРОННОГО РАЗРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-12 из 12.
04.04.2018
№218.016.354f

Способ снижения радиолокационной заметности летательных аппаратов, оборудованных газотурбинными двигателями

Изобретение относится к технике радиосвязи, радиолокации и радиоэлектронной борьбы и может быть использовано в авиационной и космической технике. Способ снижения радиолокационной заметности летательных аппаратов, оборудованных газотурбинными двигателями, заключается в том, что перед элементами...
Тип: Изобретение
Номер охранного документа: 0002645910
Дата охранного документа: 28.02.2018
29.05.2019
№219.017.64de

Способ возбуждения импульсных лазеров на самоограниченных переходах атомов металлов, работающих в режиме саморазогрева, и устройство для его осуществления

Изобретение относится к области квантовой электроники. Способ заключается в формировании с каждым импульсом возбуждения одного дополнительного импульса с задержкой между импульсами при постоянстве энерговклада в активный элемент лазера. В условиях стабилизированных параметров плазмы управление...
Тип: Изобретение
Номер охранного документа: 0002251179
Дата охранного документа: 27.04.2005
Показаны записи 11-14 из 14.
04.04.2018
№218.016.354f

Способ снижения радиолокационной заметности летательных аппаратов, оборудованных газотурбинными двигателями

Изобретение относится к технике радиосвязи, радиолокации и радиоэлектронной борьбы и может быть использовано в авиационной и космической технике. Способ снижения радиолокационной заметности летательных аппаратов, оборудованных газотурбинными двигателями, заключается в том, что перед элементами...
Тип: Изобретение
Номер охранного документа: 0002645910
Дата охранного документа: 28.02.2018
01.09.2018
№218.016.81c0

Способ плазмохимической обработки жидкого сырья органического и/или растительного происхождения и устройство для его реализации

Изобретение относится к способу плазмохимической обработки жидкого сырья, а также к устройству для такой обработки и может быть использовано в пищевой, биоэнергетической, химической и нефтехимической промышленности. Способ включает электрическое воздействие на водосодержащее сырье продуктами...
Тип: Изобретение
Номер охранного документа: 0002665418
Дата охранного документа: 29.08.2018
08.04.2019
№219.016.feca

Источник питания генератора озона

Технический результат изобретения - ограничение перенапряжений на элементах инвертора, емкости барьера и газоразрядного промежутка генератора озона и повышение эффективности его работы. Технический результат достигается тем, что в источнике питания генератора озона, содержащем первичный...
Тип: Изобретение
Номер охранного документа: 0002349021
Дата охранного документа: 10.03.2009
09.05.2019
№219.017.4f3c

Устройство защиты оборудования от импульсных перенапряжений

Изобретение относится к области электротехники. Техническим результатом изобретения является обеспечение защиты оборудования от электромагнитных импульсов техногенного и природного характера наносекундной длительности, а также возможность восстановления сетевого напряжения на линиях...
Тип: Изобретение
Номер охранного документа: 0002459333
Дата охранного документа: 20.08.2012
+ добавить свой РИД