×
12.01.2017
217.015.5ae1

Результат интеллектуальной деятельности: СИСТЕМА РЕЦИРКУЛЯЦИИ ДЛЯ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ТОПЛИВНОГО ЭЛЕМЕНТА С УЛАВЛИВАНИЕМ СО

Вид РИД

Изобретение

Аннотация: Заявленное изобретение относится к системе и способу повышения общей производительности топливного элемента, преимущественно твердооксидного топливного элемента, при одновременном отделении почти чистого потока СО для изоляции или использования при выработке электроэнергии для дополнительного увеличения общей эффективности процесса. В системе и способе используют теплообменную систему, выполненную с возможностью образования потока топлива, который возвращают на вход анода топливного элемента, с более высокой молярной концентрацией монооксида углерода (СО) и водорода (Н) в топливе, чем изначально присутствовала на выходе анода топливного элемента. Повышение эффективности системы топливных элементов в целом, а также повышение надежности их работы при снижении эксплуатационных затрат является техническим результатом изобретения.4 н. и 28 з.п. ф-лы, 6 ил.

Уровень техники

Данное изобретение в общем относится к твердооксидным топливным элементам (ТОТЭ), а более конкретно к системам и способам повышения общей производительности твердооксидного топливного элемента (ТОТЭ) при одновременном отделении почти чистого потока СО2 для изоляции или использования при выработке электроэнергии для дополнительного увеличения общей эффективности процесса.

Топливные элементы представляют собой устройства электрохимического преобразования энергии, которые продемонстрировали возможность обеспечения относительно высокой эффективности и низкого уровня загрязнений при выработке электроэнергии. Топливный элемент обычно обеспечивает постоянный ток, который может быть преобразован в переменный ток посредством, например, инвертора. Напряжение постоянного или переменного тока может быть использовано для питания двигателей, осветительных приборов и любого количества электрических устройств и систем. Топливные элементы могут работать в стационарных, полустационарных или передвижных применениях. Некоторые топливные элементы, такие как твердооксидные топливные элементы (ТОТЭ), могут работать в крупномасштабных энергетических системах, которые обеспечивают электричество для удовлетворения промышленных и коммунальных нужд. Другие топливные элементы могут быть пригодны для применения в передвижных устройствах меньших размеров, таких как, например, вагоны-электростанции.

Топливный элемент вырабатывает электричество посредством электрохимического объединения топлива и окислителя через ионопроводящий слой. Этот ионопроводящий слой, который также называют электролитом топливного элемента, может быть жидким или твердым. Распространенные типы топливных элементов включают фосфорнокислотный топливный элемент (ФКТЭ), топливный элемент с расплавленным карбонатным электролитом (ТЭРКЭ), топливный элемент с протонообменной мембраной (ТЭПОМ) и твердооксидный топливный элемент (ТОТЭ); в основном все они названы по типам их электролитов. На практике топливные элементы обычно собирают в последовательное электрическое соединение в сборке топливных элементов для выработки энергии с пригодным для использования напряжением или силой тока. Поэтому могут быть использованы соединительные конструкции для соединения или связывания соседних топливных элементов в последовательном или параллельном соединении.

Обычно компоненты топливного элемента включают электролит и два электрода. Реакции, которые вырабатывают электричество, обычно протекают на электродах, где обычно размещен катализатор для ускорения реакций. Электроды могут быть выполнены в виде каналов, пористых слоев и т.п., чтобы увеличить площадь поверхности для протекания химических реакций. Электрод, который электрохимически восстанавливает кислород (обычно из воздуха), называют катодом, в то время как электрод, который электрохимически окисляет топливо, называют анодом. Электролит переносит электрически заряженные частицы от одного электрода к другому, а в других отношениях он является по существу непроницаемым как для топлива, так и для окислителя. В случае твердооксидного топливного элемента (ТОТЭ) электролит представляет собой твердооксидную керамику, которая проводит отрицательно заряженные ионы кислорода при достаточно высокой температуре (обычно выше 500°C). Поскольку электролит в ТОТЭ обладает проводимостью только при высокой температуре, поступающий на анод поток топлива и поступающий на катод поток окислителя обычно необходимо предварительно нагревать до высокой температуры (обычно выше 500°C). Это предварительное нагревание обычно выполняют посредством рекуперативного теплообмена с горячим выходящим потоком топливного элемента.

Обычно топливный элемент преобразует водород (топливо) и кислород (окислитель) в воду (побочный продукт) для выработки электричества. Образовавшаяся в качестве побочного продукта вода может выходить из топливного элемента в виде пара при высокотемпературных режимах эксплуатации. Этот выпущенный пар (и другие горячие выходящие компоненты) можно использовать в турбинах и других устройствах для выработки дополнительного количества электричества или энергии, обеспечивая повышенную эффективность выработки энергии. Если в качестве окислителя используют воздух, то азот в воздухе является по существу инертным и обычно проходит через топливный элемент. Водородное топливо можно обеспечивать посредством локального риформинга (например, парового риформинга на месте эксплуатации) сырья на основе углерода, например, риформинга более легкодоступного природного газа и других видов углеводородного топлива и сырья. Примеры углеводородного топлива включают природный газ, метан, этан, пропан, метанол, синтез-газ и другие углеводороды. Риформинг углеводородного топлива с получением водорода для питания электрохимической реакции можно объединить с работой топливного элемента. Кроме того, такой риформинг может происходить внутри и/или вне топливного элемента. Для риформинга углеводородов, выполняемого вне топливного элемента, связанная с ним внешняя установка риформинга может быть расположена на удалении от топливного элемента или рядом с топливным элементом.

Системы на основе топливных элементов, которые могут обеспечивать риформинг углеводородов внутри топливного элемента и/или рядом с топливным элементом, могут предоставить преимущества, такие как простота конструкции и эксплуатации. Например, реакция парового риформинга углеводородов обычно является эндотермической, и, следовательно, при внутреннем риформинге внутри топливного элемента или внешнем риформинге в расположенной рядом установке риформинга можно использовать теплоту, вырабатываемую электрохимическими реакциями в топливном элементе, которые обычно являются экзотермическими. Кроме того, катализаторы, являющиеся активными в электрохимической реакции водорода и кислорода внутри топливного элемента с получением электричества, также могут облегчать внутренний риформинг углеводородного топлива. Например, в ТОТЭ, если никелевый катализатор размещен на электроде (например, на аноде) для поддержания электрохимической реакции, то активный никелевый катализатор также может обеспечивать риформинг углеводородного топлива с образованием водорода и монооксида углерода (СО). Кроме того, как водород, так и СО могут быть получены при риформинге углеводородного сырья. Таким образом, топливные элементы, такие как ТОТЭ, в которых можно использовать СО в качестве топлива (помимо водорода), обычно являются более привлекательными кандидатами для использования подвергнутого риформингу углеводорода и для внутреннего и/или осуществляемого рядом риформинга углеводородного топлива.

В общем случае, высокие рабочие температуры внутри топливного элемента и присутствие пара в качестве побочного продукта обычно способствуют внутреннему или осуществляемому рядом риформингу углеводородов. Преимущественно, избыточный пар в топливном элементе может снижать осаждение элементарного углерода внутри топливного элемента и в соседних установках риформинга. В целом, внутренний и/или осуществляемый рядом риформинг и их объединение с работой топливного элемента могут повышать эффективность и/или улучшать экономические показатели работы топливного элемента.

К сожалению, обычно трудно поддерживать достаточно высокое отношение пара к углероду во всех областях топливного элемента, чтобы предотвратить образование элементарного углерода и связанное с этим осаждение углерода, особенно если предусматривают протекание внутреннего риформинга на электроде (например, на аноде) наряду, например, с электрохимическими реакциями. Область топливного элемента вблизи входа особенно чувствительна к образованию углерода. То есть, поступающее топливо, предназначенное для внутреннего парового риформинга, испытывает недостаток в паре или жидкой воде (H2O) из-за типичного градиента концентрации Н2О (например, пара), возрастающей от входа к выходу топливного элемента. Концентрация Н2O обычно возрастает в направлении протекания топлива к выходу, и поэтому избыток H2O обычно присутствует в области выхода топливного элемента. Обычно образование углерода предполагается вблизи входа топливного элемента, поскольку концентрация Н2О является самой низкой на входе. Осаждение углерода в топливном элементе может приводить к плохому тепло/массопереносу, повреждению и/или выходу из строя топливных элементов.

Поддержание длительной работы топливных элементов может быть проблематичным из-за накопления отложений углерода в топливном элементе. Такие отложения углерода обычно являются относительно более существенными, если топливные элементы основаны на использовании сырья на основе углерода, вместо более чистого сырья на основе водорода. В итоге может возникнуть необходимость в выключении или замене топливного элемента, что, например, приводит к прекращению выработки электричества и увеличению затрат на техническое обслуживание систем топливных элементов. Кроме того, установки риформинга или установки предварительного риформинга, используемые для внешнего риформинга и/или осуществляемого рядом риформинга, также могут быть подвержены значительному осаждению углерода. Поэтому эти установки риформинга также обычно выключают для регенерации (например, посредством пара), что приводит к увеличению затрат на эксплуатацию и техническое обслуживание и снижению эффективности системы топливных элементов в целом.

Анодный блок ТОТЭ обычно электрохимически окисляет не более 80% топлива с получением продуктов реакции, при этом оставшиеся 20% проходят, не подвергаясь окислению, в выпускаемый поток. Верхний предел коэффициента использования обусловлен высокими концентрациями продуктов реакции, которые затрудняют протекание химической реакции вблизи конца анода, расположенного ниже по потоку, и могут вызывать повреждение материала топливного элемента.

Ввиду вышеизложенного существует потребность в обеспечении способа, который повысит коэффициент использования топлива в ТОТЭ. Было бы дополнительно предпочтительным, если бы данный способ обеспечивал отделение СО2 от потока топлива для изоляции или для расширения в турбине, например, для выработки электроэнергии, тем самым повышая общую эффективность процесса.

Краткое описание изобретения

Пример воплощения настоящего изобретения включает систему рециркуляции на основе топливного элемента, включающую:

топливный элемент, включающий анод, выполненный с возможностью образования горячего отходящего потока анода, причем анод включает вход и выход;

цикл рекуперации отходящего тепла, выполненный с возможностью выработки энергии из охлаждения горячего анода;

компрессор, выполненный с возможностью сжатия отходящего газа, охлажденного посредством цикла рекуперации отходящего тепла;

расширитель, выполненный с возможностью расширения и охлаждения сжатого отходящего газа, и

теплообменную систему, выполненную с возможностью приема по меньшей мере части расширенного газа и предварительного охлаждения сжатого отходящего газа цикла рекуперации отходящего тепла перед охлаждением посредством расширителя, а также выполненную с возможностью удаления посредством фазового перехода воды (Н2О) и диоксида углерода (СО2) из отходящего газа, проходящего через цикл рекуперации отходящего тепла, а также выполненную с возможностью образования потока топлива, который возвращают на вход анода топливного элемента, с более высокой молярной концентрацией монооксида углерода (СО) и водорода (Н2) в топливе, чем изначально присутствовала в отходящем газе анода топливного элемента перед поступлением в цикл рекуперации отходящего тепла.

Согласно другому воплощению, система рециркуляции на основе топливного элемента включает:

топливный элемент, включающий анод, выполненный с возможностью образования горячего отходящего газа, причем анод включает вход и выход;

цикл рекуперации отходящего тепла, выполненный с возможностью выработки энергии из охлаждения горячего анода, и

теплообменную систему, выполненную с возможностью удаления посредством фазового перехода воды (Н2О) и диоксида углерода (СО2) из отходящего газа, проходящего через цикл рекуперации отходящего тепла, а также выполненную с возможностью образования потока топлива, который возвращают на вход анода топливного элемента, с более высокой молярной концентрацией монооксида углерода (СО) и водорода (Н2) в топливе, чем изначально присутствовала в отходящем газе анода топливного элемента перед поступлением в цикл рекуперации отходящего тепла.

Согласно еще одному воплощению, система рециркуляции на основе топливного элемента включает:

систему риформинга углеводородного топлива, выполненную с возможностью образования монооксида углерода (СО) и водорода (Н2);

реактор для осуществления конверсии водяного газа, выполненный с возможностью преобразования СО в диоксид углерода (СО2);

теплообменную систему, выполненную с возможностью нагревания Н2 и удаления СО2 в твердой форме, в жидкой форме, или в обеих формах;

топливный элемент, включающий анод, выполненный с возможностью образования горячего отходящего газа под влиянием потока Н2 из теплообменной системы, причем анод включает вход и выход, и

цикл рекуперации отходящего тепла, выполненный с возможностью выработки энергии из охлаждения горячего анода.

Согласно еще одному воплощению, система рециркуляции на основе топливного элемента включает:

топливный элемент, включающий анод, выполненный с возможностью образования горячего отходящего газа, причем анод включает вход и выход;

систему риформинга углеводородного топлива, выполненную с возможностью удаления углерода из углеводородного топлива и введения подвергнутого риформингу топлива в систему рециркуляции на основе топливного элемента ниже по потоку от выхода анода топливного элемента;

цикл рекуперации отходящего тепла, выполненный с возможностью выработки энергии из охлаждения горячего анода;

компрессор, выполненный с возможностью сжатия отходящего газа, охлажденного посредством цикла рекуперации отходящего тепла;

расширитель, выполненный с возможностью расширения и охлаждения сжатого отходящего газа, и

теплообменную систему, выполненную с возможностью приема по меньшей мере части расширенного газа и предварительного охлаждения сжатого отходящего газа цикла рекуперации отходящего тепла перед охлаждением посредством расширителя, а также выполненную с возможностью удаления посредством фазового перехода воды (H2O) и диоксида углерода (CO2) из отходящего газа, проходящего через цикл рекуперации отходящего тепла, а также выполненную с возможностью образования потока топлива, который возвращают на вход анода топливного элемента, с более высокой молярной концентрацией монооксида углерода (СО) и водорода (Н2) в топливе, чем изначально присутствовала в отходящем газе анода топливного элемента перед поступлением в цикл рекуперации отходящего тепла.

Список чертежей

Вышеупомянутые и другие признаки, аспекты и преимущества изобретения очевидны из нижеследующего подробного описания в сочетании с сопровождающими чертежами, на которых одинаковыми символами обозначены одинаковые детали на всех чертежах, где:

на Фиг.1 показана упрощенная схема, иллюстрирующая систему рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно одному воплощению;

на Фиг.2 показана упрощенная схема, иллюстрирующая систему рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно другому воплощению;

на Фиг.3 показана упрощенная схема, иллюстрирующая систему рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно еще одному воплощению;

на Фиг.4 показана упрощенная схема, иллюстрирующая систему рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно еще одному воплощению;

на Фиг.5 показана упрощенная схема, иллюстрирующая систему рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно еще одному воплощению, и

на Фиг.6 показана упрощенная схема, иллюстрирующая систему рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно еще одному воплощению.

В то время как на вышеперечисленных чертежах показаны альтернативные воплощения, также предусмотрены другие воплощения настоящего изобретения, как отмечено в обсуждении. Во всех случаях, в данном описании представлены иллюстративные воплощения настоящего изобретения с целью создания представления, а не с целью ограничения. Специалисты в данной области техники могут разработать многочисленные другие модификации и воплощения, которые попадают в область защиты и соответствуют сущности настоящего изобретения.

Подробное описание изобретения

Воплощения, описанные в настоящем документе со ссылками на чертежи, преимущественно обеспечивают повышенную производительность ТОТЭ с одновременным улавливанием диоксида углерода. Также предусмотрены другие воплощения настоящего изобретения, как отмечено в обсуждении. Описанные в настоящем документе принципы можно также просто применять, например, в технологиях сопоставимых топливных элементов, которые не ограничены строго твердооксидными топливными элементами. Большое разнообразие циклов рекуперации отходящего тепла и способов объединения таких циклов также возможно с использованием принципов, описанных в настоящем документе.

На Фиг.1 показана упрощенная схема, иллюстрирующая систему 10 рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно одному воплощению. Система 10 рециркуляции содержит ТОТЭ, который включает анод 11 и катод 12. Тепло от отходящего потока анода 11 приводит в действие тепловой цикл Ренкина, который здесь называют органическим циклом 13 Ренкина (ОЦР), для выработки энергии. Отходящий газ ОЦР подают в компрессор 14, который служит для сжатия отходящего газа ОЦР после удаления некоторого количества конденсированной воды при температуре и давлении, близких к температуре и давлению окружающей среды, и перед дополнительным удалением конденсированной воды посредством охлаждения отходящего газа до температуры окружающей среды при высоком давлении. Сжатый отходящий газ ОЦР впоследствии дополнительно охлаждают посредством расширителя 15 и цикла предварительного расширения, в котором используют, например теплообменник 16 (ТО). Согласно одному аспекту, цикл предварительного расширения работает посредством охлаждения сжатого потока отходящего газа ОЦР путем контакта с теплообменником 16.

На Фиг.2 показана упрощенная схема, иллюстрирующая систему 20 рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно одному воплощению. Система 20 рециркуляции на основе ТОТЭ аналогична системе 10 рециркуляции на основе ТОТЭ, за исключением того, что в системе 20 рециркуляции на основе ТОТЭ используют охлаждающее устройство 22 с электрическим приводом, чтобы дополнительно усилить охлаждение сжатого потока отходящего газа ОЦР в течение цикла предварительного расширения.

Охлаждение сжатого потока отходящего газа ОЦР ниже температуры окружающей среды преимущественно позволяет удалять некоторое количество СО2 из потока либо в виде жидкости 24 при давлении выше давления окружающей среды, либо в виде твердого продукта 26, который конденсируется из жидкой фазы при давлении выше давления окружающей среды и температуре ниже температуры плавления. Согласно одному аспекту, в системе 20 рециркуляции на основе ТОТЭ используют устройство для сбора твердого СО2 из охлажденного отходящего газа ниже по потоку от расширителя 15, который затвердевает из газовой фазы непосредственно в точке 2-1а, изображенной на Фиг.1.

После контакта с теплообменником 16, который частично повышает его температуру до температуры, подходящей для реакции, охлажденный, подвергнутый расширению остаточный газовый поток возвращают на вход анода 11 через рекуператор 19, с более высокой молярной концентрацией СО2 и Н2 в топливе, чем изначально присутствовала в отходящем потоке анода. Согласно одному воплощению, часть потока воды, удаляемой из анода, подогревают до температуры, подходящей для реакции, посредством отходящего потока катода 12, а затем подают либо в отдельную установку риформинга выше по потоку от анода 11, либо в сам анод 11, для образования пара, необходимого для риформинга углеводородного топлива.

Воплощения 10, 20, изображенные на Фиг.1 и 2, соответственно, не ограничены этим, и следует понимать, что систему рециркуляции 10 на основе ТОТЭ и систему рециркуляции 20 на основе ТОТЭ можно реализовать в отсутствие процесса сжатия-расширения, только с применением охлаждающего устройства с электрическим приводом, такого как изображено на Фиг.3. На Фиг.3 показана упрощенная схема, иллюстрирующая систему 30 рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно одному воплощению. Охлаждение сжатого потока отходящего газа ОЦР ниже температуры окружающей среды преимущественно позволяет удалять некоторое количество CO2 из потока либо в виде жидкости 24 при давлении выше давления окружающей среды, либо в виде твердого продукта 26, который конденсируется из жидкой фазы при давлении выше давления окружающей среды и температуре ниже температуры плавления.

На Фиг.4 показана упрощенная схема, иллюстрирующая систему 40 рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно одному воплощению. В данном воплощении углеводородное топливо (СН4) преобразуют в СО и Н2 в устройстве 42 риформинга перед поступлением в анод 11 ТОТЭ. Впоследствии СО превращают в CO2 посредством устройства 44 для осуществления конверсии водяного газа в точке 3-1а, изображенной на Фиг.4. Полученный CO2 затем удаляют в твердой или жидкой форме либо посредством процесса 50 сжатия-расширения, такого как изображен на Фиг.5, либо посредством охлаждающего устройства 22 с электрическим приводом, такого как изображено на Фиг.4, или обоими средствами. Фракцию остаточного Н2 затем направляют на анод 11, после извлечения тепла посредством рекуператора/теплообменника 16 в точке 3-1b, изображенной на Фиг.4. Согласно одному аспекту, любое количество Н2, остающееся в отходящем потоке анода, можно направлять рециклом обратно на вход анода, в точке 3-1с, изображенной на Фиг.4, после прохождения через рекуператор 19, достаточного для повышения его температуры до температуры, подходящей для реакции. Согласно одному воплощению, цикл 13 Ренкина можно осуществлять ниже по потоку от выпуска анода, в точке 3-1d, изображенной на Фиг.4, вырабатывая электричество или мощность, передаваемую валом, из теплоты отходящего потока анода.

На Фиг.6 показана упрощенная схема, иллюстрирующая систему 60 рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) согласно одному воплощению. Система 60 рециркуляции на основе ТОТЭ функционирует аналогично системе 10 рециркуляции на основе ТОТЭ или системе 20 рециркуляции на основе ТОТЭ, описанным в настоящем документе, за исключением того, что топливо (СН4) после риформинга в точке 4-1а, изображенной на Фиг.6, можно вводить ниже по потоку от анода в точке 4-1b, изображенной на Фиг.6, чтобы предотвратить карбонизацию внутри анода 11. Согласно одному воплощению, риформинга топлива достигают с использованием такого способа / такой конструкции, как изображено на Фиг.4, чтобы доставить фракцию остаточного Н2 в ОЦР 13.

В качестве краткого пояснения, в настоящем документе описаны системы и способы повышения общей производительности твердооксидного топливного элемента (ТОТЭ) при одновременном отделении почти чистого потока СО2 для изоляции или использования при выработке электроэнергии для дополнительного повышения общей эффективности процесса. Системы и способы преимущественно повышают коэффициент полезного действия ТОТЭ до 50% и более, при одновременном улавливании диоксида углерода. Конкретные воплощения, в которых используют описанные в настоящем документе принципы, приводят к повышению коэффициента полезного действия твердооксидного топливного элемента до 60% и более.

Хотя в настоящем документе проиллюстрированы и описаны только некоторые признаки изобретения, много модификаций и изменений могут быть предложены специалистами в данной области техники. Поэтому следует понимать, что приложенная формула изобретения охватывает все такие модификации и изменения, поскольку они являются частью истинной сущности изобретения.


СИСТЕМА РЕЦИРКУЛЯЦИИ ДЛЯ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ТОПЛИВНОГО ЭЛЕМЕНТА С УЛАВЛИВАНИЕМ СО
СИСТЕМА РЕЦИРКУЛЯЦИИ ДЛЯ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ТОПЛИВНОГО ЭЛЕМЕНТА С УЛАВЛИВАНИЕМ СО
СИСТЕМА РЕЦИРКУЛЯЦИИ ДЛЯ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ТОПЛИВНОГО ЭЛЕМЕНТА С УЛАВЛИВАНИЕМ СО
СИСТЕМА РЕЦИРКУЛЯЦИИ ДЛЯ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ТОПЛИВНОГО ЭЛЕМЕНТА С УЛАВЛИВАНИЕМ СО
Источник поступления информации: Роспатент

Показаны записи 211-220 из 353.
25.08.2017
№217.015.b3b4

Система для подачи рабочей текучей среды в камеру сгорания (варианты)

Система для подачи рабочей текучей среды в камеру сгорания содержит камеру горения и проточный патрубок, который в окружном направлении окружает по меньшей мере часть камеры горения. Трубка обеспечивает проточное сообщение для протекания рабочей текучей среды через проточный патрубок и в камеру...
Тип: Изобретение
Номер охранного документа: 0002613764
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b3c2

Устройство для отслеживания состояния клапанов и способ работы указанного устройства

Группа изобретений относится к гидравлическим системам, в частности к способам и устройствам, облегчающим обнаружение эрозии клапанов. Клапан содержит узел штока, содержащий стенку и проход, образованный внутри указанного узла штока. Указанный проход образует первое отверстие. Часть указанной...
Тип: Изобретение
Номер охранного документа: 0002613771
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b55e

Способ и система для определения параметра охлаждающего потока хладагента

Cпособ относится к определению параметров охлаждающего потока хладагента, подаваемого через газовую турбину. Способ может включать прием сигнала, связанного с первым параметром продукта сгорания в определенном местоположении внутри зоны горения газовой турбины, прием сигнала, связанного со...
Тип: Изобретение
Номер охранного документа: 0002614241
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5cb

Система турбинного двигателя и способ его чистки

Предложены способы, системы и устройства для чистки турбин (100), например турбин для производства электроэнергии. К существующим трубопроводам (134, 136, 138, 140) отбора воздуха компрессора и воздуха охлаждения сопел турбины присоединяют вспомогательные трубопроводы для подачи воды и/или...
Тип: Изобретение
Номер охранного документа: 0002614472
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b605

Лопатка компрессора, имеющая аэродинамическую часть заданного профиля, лопатка компрессора, имеющая аэродинамическую часть со стороной пониженного давления заданного профиля, и компрессор

Лопатка компрессора имеет аэродинамическую часть заданного профиля по существу в соответствии со значениями X, Y и Z декартовой системы координат, представленными в масштабируемой таблице, выбранной из группы таблиц, состоящей из Таблиц 1-11, в которой значения X, Y и Z декартовой системы...
Тип: Изобретение
Номер охранного документа: 0002614554
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b643

Турбомашинный компонент, способ присоединения накладки к турбомашинному компоненту и турбомашинная установка

Изобретение относится к энергетике. Направляющая лопатка турбомашины содержит корпус, имеющий первый конец, который проходит ко второму концу. Один из указанных первого и второго концов содержит монтажный элемент и монтажный компонент. У одного из указанных первого и второго концов расположена...
Тип: Изобретение
Номер охранного документа: 0002614474
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b67b

Лопатка компрессора, имеющая аэродинамическую часть заданного профиля, лопатка компрессора, имеющая аэродинамическую часть со стороной пониженного давления заданного профиля, и компрессор

Компрессор содержит поворотные статорные лопатки. Лопатка компрессора имеет аэродинамическую часть заданного профиля по существу в соответствии со значениями X, Y и Z декартовой системы координат, приведенными в масштабируемой таблице, которая выбрана из группы таблиц, состоящей из Таблиц 1-2,...
Тип: Изобретение
Номер охранного документа: 0002614423
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b691

Способ и система регулирования для газовой турбины

Cпособ относится к регулированию работы газовой турбины в ответ на бедный срыв пламени в камере сгорания. Газовая турбина содержит две камеры сгорания. Способ включает обнаружение того, что первая камера сгорания гаснет в процессе работы газовой турбины с полной нагрузкой, регулирование...
Тип: Изобретение
Номер охранного документа: 0002614471
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b76b

Внутренняя платформа сопловой лопатки турбины и сопловая лопатка турбины (варианты)

Изобретение относится к энергетике. Предложена внутренняя платформа сопловой лопатки турбины. Внутренняя платформа сопла может включать полость платформы, инжекционную камеру, расположенную в упомянутой полости платформы, удерживающую пластину, расположенную на первой стороне инжекционной...
Тип: Изобретение
Номер охранного документа: 0002614892
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b783

Камера сгорания (варианты)

Изобретение относится к энергетике. Камера сгорания содержит камеру горения, которая задает продольную ось. Первичная зона реакции расположена в камере горения, а вторичная зона реакции расположена внутри камеры горения ниже по потоку от первичной зоны реакции. Центральная топливная форсунка...
Тип: Изобретение
Номер охранного документа: 0002614887
Дата охранного документа: 30.03.2017
Показаны записи 211-220 из 298.
25.08.2017
№217.015.afd3

Система для смешивания топлива (варианты)

Изобретение относится к энергетике. Система содержит смесительный узел, выполненный с возможностью смешивания жидкого топлива и воды с созданием топливной смеси. Топливная смесь предназначена для горения в камере сгорания газовой турбины. Смесительный узел содержит канал для жидкого топлива,...
Тип: Изобретение
Номер охранного документа: 0002611124
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b0ec

Система и способ контроля состояния лопаток статора

Использование: для контроля состояния множества лопаток статора. Сущность изобретения заключается в том, что система содержит множество датчиков, выполненных с возможностью генерации сигналов акустической эмиссии (АЭ), которые представляют собой волны акустической эмиссии, распространяющиеся...
Тип: Изобретение
Номер охранного документа: 0002612999
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b10b

Комплексы на основе микропузырьков и способы применения

Группа изобретений относится к медицине и касается комплекса на основе микропузырьков для доставки терапевтического агента в ткань-мишень, содержащего микропузырек, имеющий наружную оболочку, содержащую смесь нативного и денатурированного альбумина, и полую сердцевину, инкапсулирующую газ...
Тип: Изобретение
Номер охранного документа: 0002613321
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b174

Газовая турбина (варианты) и способ эксплуатации газовой турбины

Изобретение относится к энергетике. Газовая турбина содержит компрессор, камеру сгорания, расположенную ниже по потоку от компрессора, и систему теплообмена, принимающую сжатую рабочую текучую среду из компрессора. Между системой теплообмена и камерой сгорания расположено гидравлическое...
Тип: Изобретение
Номер охранного документа: 0002613100
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b2f8

Способ нанесения покрытия на поверхность (варианты)

Изобретение относится к способам получения покрытия на поверхности детали с помощью допированного раствора предшественника, содержащего ионы металла. Согласно одному варианту способа осуществляют нанесение допированного фторсиланом раствора указанного предшественника на поверхность детали,...
Тип: Изобретение
Номер охранного документа: 0002613827
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b2f9

Способ нанесения покрытия на поверхность (варианты)

Изобретение относится к способам получения покрытия на поверхности детали с помощью допированного раствора предшественника, содержащего ионы металла. Согласно одному варианту способа осуществляют нанесение допированного фторсиланом раствора указанного предшественника на поверхность детали,...
Тип: Изобретение
Номер охранного документа: 0002613827
Дата охранного документа: 27.03.2017
25.08.2017
№217.015.b3b4

Система для подачи рабочей текучей среды в камеру сгорания (варианты)

Система для подачи рабочей текучей среды в камеру сгорания содержит камеру горения и проточный патрубок, который в окружном направлении окружает по меньшей мере часть камеры горения. Трубка обеспечивает проточное сообщение для протекания рабочей текучей среды через проточный патрубок и в камеру...
Тип: Изобретение
Номер охранного документа: 0002613764
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b3c2

Устройство для отслеживания состояния клапанов и способ работы указанного устройства

Группа изобретений относится к гидравлическим системам, в частности к способам и устройствам, облегчающим обнаружение эрозии клапанов. Клапан содержит узел штока, содержащий стенку и проход, образованный внутри указанного узла штока. Указанный проход образует первое отверстие. Часть указанной...
Тип: Изобретение
Номер охранного документа: 0002613771
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b55e

Способ и система для определения параметра охлаждающего потока хладагента

Cпособ относится к определению параметров охлаждающего потока хладагента, подаваемого через газовую турбину. Способ может включать прием сигнала, связанного с первым параметром продукта сгорания в определенном местоположении внутри зоны горения газовой турбины, прием сигнала, связанного со...
Тип: Изобретение
Номер охранного документа: 0002614241
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5cb

Система турбинного двигателя и способ его чистки

Предложены способы, системы и устройства для чистки турбин (100), например турбин для производства электроэнергии. К существующим трубопроводам (134, 136, 138, 140) отбора воздуха компрессора и воздуха охлаждения сопел турбины присоединяют вспомогательные трубопроводы для подачи воды и/или...
Тип: Изобретение
Номер охранного документа: 0002614472
Дата охранного документа: 28.03.2017
+ добавить свой РИД