×
12.01.2017
217.015.5903

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ДИОКСИДА КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области плазменной технологии получения диоксида кремния. Исходным сырьем для получения нанопорошка диоксида кремния служит силикатное сырье с содержанием диоксида кремния не менее 70% и дисперсностью не более 2 мм. Сырье вводят в плазменный реактор сбоку. Температуру плазмы обеспечивают равной 2500-3000°С. Получение нанопорошка производится путем осаждения мелкодисперсных частиц на стенках плазменного реактора, которые подвергают принудительному водоохлаждению. Способ позволяет повысить выход качественного нанопорошка при низких энергозатратах. 1 табл.

Изобретение относится к области плазменных технологий и может быть использовано для получения нанопорошка диоксида кремния, который может найти применение в разных областях промышленности, но преимущественно в стройиндустрии в качестве модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных и термостойких материалов.

Из уровня техники известен способ получения дисперсных частиц диоксида кремния, в котором производят смешение летучего кремнийсодержащего компонента - тетрахлорида кремния (SiCl4) с водородообразующим газом (например, Н2, СН4) и кислородсодержащим газом, подачу этой смеси в реактор, разложение летучего кремнийсодержащего компонента и окисление продуктов разложения (US 6352679, C01B 33/12, 2002). При этом в пламени реактора при температуре от 1000 до 2100°С, поддерживаемой за счет энергии экзотермических реакций, происходит разложение SiCl4 и окисление продуктов разложения с образованием диоксида кремния - SiO2, а также соляной кислоты - HCl и влаги - Н2О, наличие которых в продуктах реакции снижает качество диоксида кремния и усложняет как процесс его получения, так и аппаратурное оборудование.

Известен способ получения высокодисперсного порошка диоксида кремния (RU 2349546 C1, С01В 33/18, опубл. 20.03.2009), включающий генерацию плазмы кислорода или кислородсодержащего газа, введение путем распыления в поток газовой плазмы жидкого тетрахлорида кремния и последующее окисление тетрахлорида кремния кислородом или кислородсодержащим газом при температуре 1000÷2100°С и при соотношении молярных расходов тетрахлорида кремния и кислорода от 1,0 до 3,0, при этом распыление жидкого тетрахлорида кремния производят соосно внутри и в направлении движения потока плазмы при давлении 0,2÷2,0 МПа с углом раскрытия факела распыливания 70÷170°. Недостатком данного способа является необходимость применения тетрахлорида кремния, который требует повышенных мер предосторожности при работе и представляет опасность для организма человека.

Наиболее близким по технической сущности и достигаемому результату является способ получения нанопорошков, реализуемый при помощи плазменной установки для получения нанодисперсных порошков (RU 2311225 C1, B01J 19/00, опубл. 27.11.2007). Согласно RU 2311225 нанопорошок получают путем осаждения мелкодисперсных частиц на стенках плазменного реактора. Сначала генерируют поток низкотемпературной плазмы. Затем сверху непосредственно в плазму вводят газообразное, жидкое или порошкообразное неорганическое сырье. Ввод сырья осуществляют за пределами канала течения плазмы через плоскость верхней крышки реактора на расстоянии от оси канала течения плазмы в 1,2-2,5 радиуса канала и под углом 45-70°. Вблизи плазменного потока на крышке реактора происходит спекание частиц вводимого сырья. Очистку крышки от спеков и удаление отложений нанопорошка со стенок реактора производят очистителями в разное время во избежание смешивания готового нанопорошка. Недостатком прототипа является то, что сырье вводят непосредственно в плазменную струю, но за счет динамического напора плазменного потока частицы не всегда будут подвергаться сублимации. Они могут пролетать и не изменять свои свойства или переходить лишь в расплавленное состояние, но не испаряться. Также недостатком является возможность загрязнения нанопорошка спеками и выполнение в связи с этим дополнительных операций, связанных с очисткой крышки реактора от образования спеков. К недостаткам следует отнести и повышенные энергозатраты, температура плазмы обеспечивается выше 3200 К, поскольку более низкая температура может оказаться недостаточной для полной переработки непрерывно поступающего исходного сырья.

Задача изобретения заключается в повышении эффективности выхода нанопорошка диоксида кремния с размером частиц менее 100 нм с использованием низкотемпературной плазмы при одновременном упрощении технологии его производства и экономии энергозатрат.

Технический результат, позволяющий решить поставленную задачу, заключается в получении на стенках реактора мелкодисперсных частиц диоксида кремния за счет реакции сублимации которая происходит при взаимодействии сырья и потока низкотемпературной плазмы.

Задача и технический результат достигаются следующим образом.

Способ получения нанопорошка диоксида кремния, как и прототип, основан на осаждении мелкодисперсных частиц на стенках плазменного реактора. Общим с прототипом является то, что сначала генерируют поток низкотемпературной плазмы, после чего в плазменный реактор вводят тугоплавкое порошкообразное сырье. Осажденный (готовый) нанопорошок собирают со стенок плазменного реактора.

В отличие от прототипа в качестве исходного сырья используют силикатное сырье с содержанием диоксида кремния не менее 70% и дисперсностью не более 2 мм, которое вводят в плазменный реактор сбоку.

Температуру плазмы обеспечивают 2500-3000°С, а стенки плазменного реактора одновременно подвергают принудительному водоохлаждению.

Задача и технический результат достигаются за счет того, что сырье подается в реактор сбоку (с целью образования лужи расплава), а не непосредственно в плазменную струю сверху, как по прототипу. Кроме того, для достижения технического результата важно использовать в качестве сырья именно сырье с содержанием SiO2 не менее 70%. Были проведены исследования по применению различного силикатного сырья, такого как, например, гранит (содержание диоксида кремния - 62,5%), молотое стекло (содержание диоксида кремния - 72,5%) и кварцевый песок (содержание диоксида кремния - 98,5%). Ряд экспериментов показал, что выход целевого нанопорошка прямо пропорционален содержанию SiO2 в сырьевом материале: чем больше его содержание в сырье, тем большее количество наночастиц именно диоксида кремния образовывается в результате. В случае когда содержание диоксида кремния в сырье меньше 70%, при прочих равных условиях целевой продукт терял свою чистоту за счет образования примесей других веществ в осаждаемой фазе, и качество нанопорошка снижалось.

Также нами было установлено, что частица кварца размером 2 мм полностью расплавится в плазменном потоке за время 2,6 с, частица размером 0,4 мм расплавится за 0,1 с, при этом частицы достигают температуры 1700-1750°С, что обеспечивает их полное плавление. При достижении температуры 2500-3000°С происходит интенсификация процессов сублимации. Проведенные расчеты позволяют подобрать размеры частиц сырьевого материала в зависимости от скорости движения частицы в плазменном потоке, что определяет время нахождения частицы в плазме до ее полного расплавления. Экспериментально было установлено, что размер частиц для получения однородного расплава с последующей сублимацией должен быть до 2 мм, причем температуры плазмы Τ~2500-3000°С, как было установлено, достаточно для протекания процесса сублимации кремнийсодержащего сырья указанной дисперсности. Повышение температуры нецелесообразно с точки зрения энергозатрат при работе установки.

В уровне техники не обнаружено совокупности существенных отличительных признаков в заявляемом соотношении для достижения указанного технического результата. Именно использование исходного сырья с содержанием диоксида кремния не менее 70% и дисперсностью до 2 мм позволяет получить качественный нанопорошок при низких энергозатратах.

Способ осуществляется следующим образом.

Сначала, при помощи плазмотрона прямого действия с вынесенной дугой, зажигаем плазменную струю, имеющую Т ~ 2500-3000°С. Для первичного розжига струи применяется графитовый анод на дне реактора.

Затем сбоку в плазменный реактор подается сырье. Под действием плазмы в реакторе происходят физико-химические процессы плавления сырья. Более того, после образования расплава в нем возникает электропроводность. Ток течет по расплаву, одновременно обеспечивая повышение температуры на поверхности (джоулев нагрев), в результате чего происходит дополнительное испарение частиц диоксида кремния. Газовая фаза в виде диоксида кремния осаждается на водоохлаждаемых поверхностях реактора.

Решение поставленной задачи и достижение технического результата подтверждается конкретными примерами.

При неизменном технологическом режиме плазменной установки (U=120 В, I=310 А, Т ~ 2500-3000°С) использовали 3 вида силикатного сырья, предварительно измельченного до фракции не более 2 мм: гранит, молотое стекло, кварцевый песок.

Проведенные испытания показали, что при использовании сырья, где содержание диоксида кремния более 70% (молотое стекло - 72,5% и кварцевый песок - 98,5%), выход наночастиц составляет от 50 до 60% и размер наночастиц при этом составляет от 10 до 100 нм.

Что касается сырья в виде гранита, где SiO2 составляет 62,5%, то выход наночастиц является недостаточным и использование такого сырья для получения наночастиц диоксида кремния является неэффективным и нерентабельным.

Проведенные исследования также показали, что полученные заявляемым способом наночастицы имеют сферическую форму.

Способ получения нанопорошка диоксида кремния путем осаждения мелкодисперсных частиц на стенках плазменного реактора, согласно которому генерируют поток низкотемпературной плазмы, в плазменный реактор вводят тугоплавкое порошкообразное сырье, а осажденный нанопорошок собирают со стенок плазменного реактора, отличающийся тем, что в качестве исходного сырья используют силикатное сырье с содержанием диоксида кремния не менее 70% и дисперсностью не более 2 мм, которое вводят в плазменный реактор сбоку, при этом обеспечивают температуру плазмы 2500-3000°C, а стенки реактора одновременно подвергают принудительному водоохлаждению.
Источник поступления информации: Роспатент

Показаны записи 21-30 из 36.
10.05.2015
№216.013.4aa9

Способ устройства инъекционной сваи

Изобретение относится к строительству, в частности к способам возведения свайных оснований и фундаментов преимущественно в слабых грунтах, и может быть использовано в промышленном и гражданском строительстве, как при усилении фундаментов старых, поврежденных или требующих реконструкции зданий,...
Тип: Изобретение
Номер охранного документа: 0002550620
Дата охранного документа: 10.05.2015
10.07.2015
№216.013.5ffc

Способ очистки полых изделий

Изобретение относится к области электрогидроимпульсной очистки полых изделий и может быть использовано для очистки от отложений бывших в эксплуатации полых промышленных изделий. Техническим результатом заявленного изобретения является повышение качества и эффективности очистки внутренней...
Тип: Изобретение
Номер охранного документа: 0002556113
Дата охранного документа: 10.07.2015
20.09.2015
№216.013.7bb2

Способ получения теплоизоляционного изделия на основе вермикулита

Изобретение относится к области промышленности строительных материалов и может быть использовано при изготовлении теплоизоляционных изделий различной геометрической формы, преимущественно плит. Способ получения теплоизоляционного изделия на основе вермикулита включает получение связующей смеси...
Тип: Изобретение
Номер охранного документа: 0002563263
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7cbe

Способ получения огнеупорного материала для стекловаренных печей

Способ получения огнеупорного материала для стекловаренных печей может найти применение в стекловаренной промышленности при изготовлении изделий, контактирующих с расплавом стекла. Поверхность бадделеитокорундового огнеупорного материала оплавляют потоком низкотемпературной плазмы температурой...
Тип: Изобретение
Номер охранного документа: 0002563531
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.83a7

Способ получения кремнеземистого расплава для кварцевой керамики

Изобретение относится к способу получения кремнеземистого расплава для кварцевой керамики. Технический результат - получение химически однородного кремнеземистого расплава при низких энергозатратах. Весь объем водоохлаждаемой плавильной печи заполняют кварцевым песком. В зоне плавления...
Тип: Изобретение
Номер охранного документа: 0002565306
Дата охранного документа: 20.10.2015
10.12.2015
№216.013.96d3

Стенд для испытания железобетонных элементов на совместное кратковременное динамическое воздействие изгибающего и крутящего моментов

Изобретение относится к испытательной технике, а именно к машинам для испытания железобетонных образцов на совместное действие изгибающего и крутящего моментов, создаваемых воздействием кратковременной динамической нагрузки. Стенд содержит опоры для размещения железобетонного элемента и две...
Тип: Изобретение
Номер охранного документа: 0002570231
Дата охранного документа: 10.12.2015
10.03.2016
№216.014.c098

Способ получения модифицирующей добавки для цементной композиции и цементная композиция

Изобретение относится к способу получения модифицирующей добавки для цементной композиции и к цементной композиции и может найти применение при производстве строительных материалов. В способе получения модифицирующей добавки для цементной композиции путем карбоксиметилирования древесных...
Тип: Изобретение
Номер охранного документа: 0002576766
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c61d

Способ испытания строительных конструкций на изгиб с кручением при статическом и кратковременном динамическом воздействии

Изобретение относится к области строительства и может быть использовано при испытании конструкций и отдельных элементов зданий и сооружений, работающих на изгиб с кручением при статическом и кратковременном динамическом воздействии с определением точной деформационной модели конструкции,...
Тип: Изобретение
Номер охранного документа: 0002578662
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c998

Центробежный очиститель генераторного газа

Изобретение относится к теплоэнергетике и может быть использовано в химической, металлургической, топливно-энергетической и других отраслях промышленности для очистки газов генераторной установки. Очиститель содержит цилиндрический корпус с центральной трубкой, коническим днищем и герметичными...
Тип: Изобретение
Номер охранного документа: 0002577436
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2e20

Устройство для очистки дорог

Изобретение относится к устройству для очистки дорог и тротуаров от наледи и спрессованного снега. Устройство содержит смонтированные на базовом шасси опорную раму и соединенную с ней с возможностью опускания и подъема подвижную раму. На подвижной раме закреплена горизонтальная ось, на которой...
Тип: Изобретение
Номер охранного документа: 0002579364
Дата охранного документа: 10.04.2016
Показаны записи 21-30 из 46.
10.12.2014
№216.013.0e31

Фильтр

Изобретение предназначено для очистки жидкостей от механических примесей и может найти применение в разных отраслях промышленности, преимущественно в химической, нефтеперерабатывающей и автомобильной промышленности для очистки углеводородных жидкостей. Фильтр содержит закрытые с торцов жесткий...
Тип: Изобретение
Номер охранного документа: 0002535050
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.1605

Способ затяжки резьбового соединения

Способ затяжки резьбового соединения может найти применение при сборке крупных ответственных резьбовых соединений в машиностроительной, автомобильной, авиационной и других отраслях промышленности. Между гайкой и соединяемыми деталями устанавливают тарельчатую пружину, выполненную из сплава на...
Тип: Изобретение
Номер охранного документа: 0002537061
Дата охранного документа: 27.12.2014
10.02.2015
№216.013.23b0

Автоматизированная технологическая линия для поверхностной модификации наночастицами серебра полимерного волокнистого материала

Автоматизированная технологическая линия для поверхностной модификации наночастицами серебра полимерного волокнистого материала предназначена для получения антибактериального фильтровального материала. В состав автоматизированной линии входят последовательно установленные блок пропитки...
Тип: Изобретение
Номер охранного документа: 0002540589
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a5e

Автоматизированная технологическая линия для поверхностной модификации металлооксидными наночастицами полимерного волокнистого материала

Автоматизированная технологическая линия для поверхностной модификации металлооксидными наночастицами полимерного волокнистого материала может найти применение в производстве фильтровального материала, предназначенного для очистки воды от органических загрязнений. В состав автоматизированной...
Тип: Изобретение
Номер охранного документа: 0002542303
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3fe9

Способ управления повышением живучести многоэтажного панельного здания после взрывного воздействия и безопасности проведения ремонтно-восстановительных работ

Изобретение относится к области строительства, в частности к способу управления повышением живучести многоэтажного панельного здания после взрывного воздействия. Способ заключается в том, что по отсутствию трещин в плитах перекрытий и в стеновых панелях устанавливают граничные горизонтальную и...
Тип: Изобретение
Номер охранного документа: 0002547849
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.44a1

Окно в раздельных переплетах

Окно в раздельных переплетах относится к области строительства. Конструкция окна включает переплеты из многокамерных ПВХ профилей, в каждый из которых установлен однокамерный или многокамерный стеклопакет. Камеры стеклопакетов могут быть заполнены инертным газом, а стеклопакеты выполнены с...
Тип: Изобретение
Номер охранного документа: 0002549067
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4aa9

Способ устройства инъекционной сваи

Изобретение относится к строительству, в частности к способам возведения свайных оснований и фундаментов преимущественно в слабых грунтах, и может быть использовано в промышленном и гражданском строительстве, как при усилении фундаментов старых, поврежденных или требующих реконструкции зданий,...
Тип: Изобретение
Номер охранного документа: 0002550620
Дата охранного документа: 10.05.2015
10.07.2015
№216.013.5ffc

Способ очистки полых изделий

Изобретение относится к области электрогидроимпульсной очистки полых изделий и может быть использовано для очистки от отложений бывших в эксплуатации полых промышленных изделий. Техническим результатом заявленного изобретения является повышение качества и эффективности очистки внутренней...
Тип: Изобретение
Номер охранного документа: 0002556113
Дата охранного документа: 10.07.2015
20.09.2015
№216.013.7bb2

Способ получения теплоизоляционного изделия на основе вермикулита

Изобретение относится к области промышленности строительных материалов и может быть использовано при изготовлении теплоизоляционных изделий различной геометрической формы, преимущественно плит. Способ получения теплоизоляционного изделия на основе вермикулита включает получение связующей смеси...
Тип: Изобретение
Номер охранного документа: 0002563263
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7cbe

Способ получения огнеупорного материала для стекловаренных печей

Способ получения огнеупорного материала для стекловаренных печей может найти применение в стекловаренной промышленности при изготовлении изделий, контактирующих с расплавом стекла. Поверхность бадделеитокорундового огнеупорного материала оплавляют потоком низкотемпературной плазмы температурой...
Тип: Изобретение
Номер охранного документа: 0002563531
Дата охранного документа: 20.09.2015
+ добавить свой РИД