×
20.06.2016
217.015.04d3

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ И РЕСУРСНЫХ ХАРАКТЕРИСТИК ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано при теплофизических исследованиях теплозащитных покрытий. Заявлена установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий, содержащая вакуумную камеру и источник нагрева образца с теплозащитным покрытием. В качестве источника нагрева образца с теплозащитным покрытием использован плазмотрон, расположенный в вакуумной камере так, что плазменный поток направлен на теплозащитное покрытие образца. Образец с теплозащитным покрытием установлен в кожухе цилиндрического корпуса для охлаждения образца. Кожух со стороны плазмотрона снабжен упорным буртиком для установки образца с теплозащитным покрытием, а с противоположной стороны - крепежными элементами для закрепления образца между буртиком кожуха и цилиндрическим корпусом. В цилиндрическом корпусе выполнен центральный канал для подачи охлаждающей образец воды и по крайней мере два канала для отвода нагретой воды от образца, расположенные симметрично и на равном расстоянии от центрального канала. В центральном и одном из отводных каналов установлены термопары. Внутренняя поверхность цилиндрического корпуса и поверхность образца образуют полость, сообщающуюся с центральным каналом и каналом для отвода воды. На торцевой поверхности цилиндрического корпуса со стороны установки образца выполнена канавка с установленным в нее уплотнительным кольцом. Технический результат - повышение достоверности получаемых результатов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к теплофизическим исследованиям теплозащитного покрытия (ТЗП) на материале в условиях, приближенных к работе ТЗП изделий ракетно-космической техники. В частности, может быть использовано для определения коэффициента теплопроводности ТЗП.

Известен способ определения теплофизических характеристик теплозащитных покрытий («Новые технологические процессы и надежность ГТД», Выпуск 7. М., ЦИАМ, 2008, с. 171). Исследуемый образец, представляющий собой плоский диск с теплозащитным покрытием из высокотемпературного керамического материала, нанесенным на одну грань по электронно-лучевой технологии, поверх которого нанесен тонкий слой интерметаллида, помещают в вакуумную камеру, вакуумируют и облучают с помощью лазера коротким импульсом лучистой энергии со стороны слоя интерметаллида. Возрастание температуры на обратной стороне образца измеряют при помощи термопары или инфракрасного детектора. Экспериментально определяют температуропроводность и теплоемкость, затем по этим характеристикам рассчитывается теплопроводность.

Недостатком данного способа является то, что измерения температуропроводности α и расчеты теплопроводности λ носят точечный характер и для получения среднего значения этих параметров по площади образца требуется большое количество измерений. Кроме того, получаемые в этом способе в условиях вакуума величины α и λ могут значительно отличаться от значений α и λ для ТЗП в рабочих условиях на деталях изделий ракетно-космической промышленности (РКП).

Наиболее близким техническим решением, принятым за прототип, является устройство, описанное в патенте РФ №2415408 от 27.03.2011. Образец, представляющий собой металлическую основу с нанесенным теплозащитным покрытием, помещают в вакуумную камеру и нагревают металлическую основу от источника постоянного тока до рабочих температур. На поверхности металлической основы закрепляют термопару, а со стороны ТЗП устанавливают пирометр. Измеренные температуры используют для определения теплофизических характеристик ТЗП, таких как температуропроводность, теплоемкость и теплопроводность.

Основными недостатками этого изобретения также остаются значительные отличия получаемых в этом способе результатов по α и λ от величин α и λ для условий обтекания ТЗП высокотемпературным газом, имеющим место на деталях изделий РКП.

Технический результат заключается в том, что предлагаемое устройство позволяет в условиях, близких к натурным, получить достоверные экспериментальные данные для расчета теплофизических характеристик ТЗП, используемых в изделиях ракетно-космической техники.

Для достижения этого технического результата предлагается установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий, содержащая вакуумную камеру и источник нагрева образца с теплозащитным покрытием, в качестве источника нагрева образца с теплозащитным покрытием использован плазмотрон, расположенный в вакуумной камере так, что плазменный поток направлен на теплозащитное покрытие образца. Образец с теплозащитным покрытием установлен в кожухе цилиндрического корпуса для охлаждения образца, кожух со стороны плазмотрона снабжен упорным буртиком для установки образца с теплозащитным покрытием, а с противоположной стороны - крепежными элементами для закрепления образца между буртиком кожуха и цилиндрическим корпусом. В цилиндрическом корпусе выполнен центральный канал для подачи охлаждающей образец воды и по крайней мере два канала для отвода нагретой воды от образца, расположенные симметрично и на равном расстоянии от центрального канала. Суммарная площадь поперечных сечений отводных каналов равна площади поперечного сечения центрального канала, а в центральном и одном из отводных каналов установлены термопары. Внутренняя поверхность цилиндрического корпуса и поверхность образца образуют полость, сообщающуюся с центральным каналом и каналами для отвода воды. На торцевой поверхности цилиндрического корпуса со стороны установки образца выполнена канавка с установленным в нее уплотнительным кольцом. Кроме того, установка может содержать по меньшей мере четыре крепежных элемента, каждый из которых включает держатель с резьбовым отверстием для болта и болт. Уплотнительное кольцо может быть выполнено из силиконовой резины.

Предлагаемое изобретение поясняется чертежами. На Фиг. 1 изображена схема установки. На Фиг. 2 - схема определения коэффициента теплопроводности ТЗП.

На Фиг. 1 введены следующие обозначения: 1 - плазмотрон; 2 - плазма, истекающая из него в вакуумную камеру 15, в которой поддерживается динамический вакуум; 3 - отошедший скачок уплотнения перед образцом; 4 - висячий скачок уплотнения; 5 - образец; 6 - теплозащитное покрытие; 7 - кожух цилиндрического корпуса; 8 - цилиндрический корпус; 9 - центральный входной канал; 10 - выходной канал; 11 - уплотнительное кольцо; 12 - буртик кожуха; 13 - держатель; 14 - болт.

Установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий содержит образец, представляющий собой металлическую основу 5 с нанесенным на нее со стороны плазмотрона 1 теплозащитным покрытием 6, который при помощи подвижного кожуха цилиндрического корпуса 7 притягивается болтами 14 через держатели 13 вплотную к цилиндрическому корпусу 8. Герметичность установки обеспечивается уплотнительным кольцом 11, которое установлено в канавке на торцевой поверхности цилиндрического корпуса 8 со стороны образца с ТЗП.

Для охлаждения образца с покрытием в установку через центральный входной канал 9 подается вода при температуре Т1, а нагретая вода, имеющая температуру Т2, отводится по двум выходным каналам 10, суммарная проходная площадь которых равна проходной площади центрального входного канала. Температуры T1 и Т2 измеряются термопарами (на чертежах не показаны), расход воды mв замеряется ротаметром.

Установка содержит вакуумную камеру 15, в которой поддерживается динамический вакуум во время натекания плазмы на металлическую основу 5 с теплозащитным покрытием 6 из плазмотрона 1, который также располагается в вакуумной камере 15.

Установка работает следующим образом. Перед запуском плазмотрона 1 в установку подают охлаждающую воду (температура Т1) по центральному входному каналу 9. Из установки вода вытекает по двум выходным каналам 10 при температуре Т2. Перед запуском плазмотрона 1 Т1=Т2. Затем подают плазмообразующий газ - азот - в плазмотрон 1 и напряжение на плазмотрон. Загорается дуга и образующаяся при этом плазма 2 натекает в вакуумную камеру с образованием висячего скачка уплотнения 4 и отошедшей ударной волны 3 перед металлической основой 5 с теплозащитным покрытием 6. При этом охлаждающая вода нагревается в установке от Т1 до Т2 (Т2>Т1). Для расчета эффективного коэффициента теплопроводности ТЗП измеряют разность температур воды ΔT во входном и выходном каналах системы охлаждения и секундный расход воды, охлаждающей металлическую основу с ТЗП.

Рассмотрим методику расчета коэффициента теплопроводности ТЗП (*λпок) с помощью данной установки. На фигуре 2 приняты следующие обозначения:

mв - секундный массовый расход воды,

Св - удельная теплоемкость воды,

λобр - коэффициент теплопроводности образца,

λпок - коэффициент теплопроводности покрытия,

Δ - толщина образца, [м];

δ - толщина теплозащитного покрытия, [м];

Ср - удельная теплоемкость плазмы при постоянном давлении,

F - площадь поверхности образца, обтекаемая плазмой, [м2];

α0 - коэффициент конвективного теплообмена между плазмой и покрытием,

αв - коэффициент конвективного теплообмена между охлаждающей водой и образцом

I - энтальпия плазмы,

T1 - температура воды, входящей в установку, [К];

T2 - температура воды, выходящей из установки, [К];

Tw1 - температура нижней поверхности образца со стороны плазмотрона, [К];

Тw2 - температура верхней поверхности образца и нижней поверхности покрытия со стороны плазмотрона, [К];

Tw3 - температура верхней поверхности покрытия со стороны плазмотрона, [К].

Количество тепла Qвых, которое от плазмы прошло сквозь установку, вышло из нее и пошло на нагрев массы воды mв от T1 до T2 равно:

Количество тепла Qвод, снятое водой с нижней поверхности образца за счет конвективного теплообмена по закону Ньютона, равно:

Количество тепла Qобр, прошедшее образец по закону Фурье, определяется:

Количество тепла Qплаз, пришедшее от плазмы к внешней поверхности покрытия за счет конвективного теплообмена, согласно [1, 2] равно:

где I00 и Iw3 - энтальпия плазмы, определенная по параметрам торможения в плазмотроне и на поверхности покрытия соответственно.

Количество тепла Qпокр, прошедшего покрытие:

При отсутствии стоков тепла в установке имеем:

Qвых=Qвoд=Qобр=Qпокр=Qплаз.

Во время работы установки проводят измерение всего трех величин: mB; T1 и Т2. Величины, входящие в выражения (1)÷(5): Δ; δ; F; Св; λобр, СР; ·0, αв, I00, Iw3, измеряются до запуска установки или берутся из справочных таблиц.

Для определения Tw1 в нижнюю поверхность образца была зачеканена хромель-копелевая термопара.

Точность данного способа определения λпокр, оцененная по измерению λ на известных покрытиях, дала величину ~ ±10%.

Помимо измерения λ данная установка позволяет проводить ресурсные и термоциклические испытания ТЗП. Для проведения ресурсных испытаний работающий плазмотрон остается включенным требуемое по техническому заданию время, моделирующее время работы ТЗП на изделии РКП. После остановки плазмотрона образец с ТЗП исследуют с целью определения сохранения работоспособности ТЗП.

Для проведения термоциклических испытаний, заключающихся в многоразовых тепловых нагружениях ТЗП, плазмотрон включают и отключают требуемое число раз (обычно несколько десятков). Во время работы плазмотрона при каждом цикле контролируют температуру воды в отводящей магистрали после выхода на стационарный режим. Отметим, что установка позволяет проводить измерение λ как до, так и после проведения термоциклических и ресурсных испытаний.

Для проведения тепловых испытаний покрытий и исследования теплопроводности при температурах, приближенных к рабочим в изделиях РКТ, была создана экспериментальная установка (УПТИП) на базе установки ВС-2 ГНЦ ФГУП «Центр Келдыша». Для проведения испытаний использовали плазмотрон (мощность дугового разряда до 20 кВт), работающий в условиях динамического вакуума (давление в рабочей камере ~102 Па) и на атмосфере. Экспериментальная установка позволяет достигать температуру на поверхности покрытия до 2200÷2500 К, что соответствует натурным условиям работы ЖРД.

Использованные источники

1. Авдуевский B.C. Основы теплопередачи в авиационной и ракетно-космической технике / B.C. Авдуевский, Б.М. Галицейский, Г.А. Глебов и др. - М.: Машиностроение, 1975 г. - 624 с.

2. Петров Г.И. Аэромеханика больших скоростей и космические исследования: избр. тр. / Г.И. Петров. - М.: Наука, 1992. - 305 с.

3. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. - М.: Наука, 1972 г. - 720 с.


УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ И РЕСУРСНЫХ ХАРАКТЕРИСТИК ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ
УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ И РЕСУРСНЫХ ХАРАКТЕРИСТИК ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ
УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ И РЕСУРСНЫХ ХАРАКТЕРИСТИК ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 20.
10.04.2016
№216.015.31ae

Устройство для теплового воздействия на нефтяной пласт

Изобретение относится к нефтедобывающей промышленности и предназначено для добычи высоковязкой нефти посредством теплового воздействия на нефтяные пласты при подаче в них теплоносителя. Технический результат предлагаемого изобретения заключается в обеспечении удобства его монтажа и...
Тип: Изобретение
Номер охранного документа: 0002580859
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.450f

Устройство для измерения теплового потока в камере сгорания и способ его установки

Группа изобретений относится к устройствам для измерения тепловых потоков, а также к способам установки устройств для измерения теплового потока в стенке камеры сгорания, и может быть использована для измерения тепловых потоков в камерах сгорания двигателей при высоких давлениях и...
Тип: Изобретение
Номер охранного документа: 0002586089
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.45f8

Способ нанесения покрытия плазменным напылением в динамическом вакууме

Изобретение относится к способу нанесения покрытий плазменным напылением в динамическом вакууме и может найти применение в плазмометаллургии, авиационной и ракетно-космической промышленности. Направляют поток плазмы с напыляемым порошком на поверхность вращающейся детали, находящейся в области...
Тип: Изобретение
Номер охранного документа: 0002586932
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.4e7f

Раструб сопла ракетного двигателя с тепловой изоляцией

Изобретение относится к ракетной технике. Раструб сопла ракетного двигателя с тепловой изоляцией выполнен из композиционного материала, который представляет собой армированную углеродными волокнами керамическую матрицу. Тепловая изоляция выполнена в виде кожуха из пакета пластин углеродного...
Тип: Изобретение
Номер охранного документа: 0002595295
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4f80

Дисперсно-упрочненный композиционный материал на основе алюминиевой матрицы и способ его получения

Группа изобретений относится к получению дисперсно-упрочненного композиционного материала на основе алюминиевой матрицы, армированной наночастицами оксидной керамики. Способ включает обработку шихты в шаровой мельнице, одноосное холодное прессование и спекание. Предварительно наночастицы...
Тип: Изобретение
Номер охранного документа: 0002595080
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.abac

Центростремительная турбина

Изобретение относится к энергетическому, транспортному и авиационному двигателестроению и может быть использовано в технических объектах, где в качестве источника энергии целесообразно использовать высокотемпературную высокооборотную центростремительную турбину с небольшим объемным расходом...
Тип: Изобретение
Номер охранного документа: 0002612309
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.abf2

Ионный двигатель с устройством защиты от дугового разряда в межэлектродном зазоре ионно-оптической системы

Изобретение относится к ракетно-космической технике и может быть использовано при испытаниях и эксплуатации ионных двигателей. Ионный двигатель снабжен устройством для защиты от дугового разряда, вызванного межэлектродным пробоем между эмиссионным и ускоряющим электродами ионно-оптической...
Тип: Изобретение
Номер охранного документа: 0002612308
Дата охранного документа: 06.03.2017
20.02.2019
№219.016.c245

Способ очистки рабочей части ускорительного канала стационарного плазменного двигателя от продуктов эрозии

Изобретение относится к космической технике, в частности к электрореактивным двигателям и двигательным установкам (ЭРД и ЭРДУ), созданным на базе ускорителей с замкнутым дрейфом электронов, называемых стационарными плазменными холловскими двигателями, и может быть использовано для повышения...
Тип: Изобретение
Номер охранного документа: 0002458249
Дата охранного документа: 10.08.2012
20.02.2019
№219.016.c3a1

Устройство для испытаний жидкостных ракетных двигателей

Изобретение относится к ракетной технике и может быть использовано для экспериментальной отработки при создании и модернизации маршевых однокамерных и многокамерных установок, в частности для имитации высотных условий при огневых испытаниях жидкостных ракетных двигателей с соплами больших...
Тип: Изобретение
Номер охранного документа: 0002449159
Дата охранного документа: 27.04.2012
19.04.2019
№219.017.3412

Способ нанесения покрытий

Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может быть использовано в машиностроительной промышленности, а именно в ракетостроении и авиастроении. Способ включает установку плазмотрона в камеру с пониженным давлением, размещение подложки для нанесения...
Тип: Изобретение
Номер охранного документа: 0002462536
Дата охранного документа: 27.09.2012
Показаны записи 21-24 из 24.
20.02.2019
№219.016.c40c

Способ нанесения теплозащитного покрытия

Изобретение относится к вакуумной технологии нанесения теплозащитных покрытий на изделия из меди и может быть использовано в авиа- и машиностроении и других областях. Способ нанесения теплозащитного покрытия включает размещение изделия в вакуумной камере. Затем осуществляют наноструктурирование...
Тип: Изобретение
Номер охранного документа: 0002467878
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eded

Способ плазменного нанесения наноструктурированного теплозащитного покрытия

Изобретение относится к способу плазменного нанесения наноструктурированного теплозащитного покрытия. Предварительно на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, что позволяет после...
Тип: Изобретение
Номер охранного документа: 0002683177
Дата охранного документа: 26.03.2019
19.04.2019
№219.017.3412

Способ нанесения покрытий

Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может быть использовано в машиностроительной промышленности, а именно в ракетостроении и авиастроении. Способ включает установку плазмотрона в камеру с пониженным давлением, размещение подложки для нанесения...
Тип: Изобретение
Номер охранного документа: 0002462536
Дата охранного документа: 27.09.2012
17.02.2020
№220.018.037e

Способ получения градиентного нанокомпозитного теплозащитного покрытия

Изобретение относится к области порошковой металлургии, в частности к способам получения градиентных нанокомпозитных теплозащитных покрытий для деталей, подверженных воздействию высокотемпературных газовых потоков в авиационной, ракетно-космической технике и машиностроении. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002714345
Дата охранного документа: 14.02.2020
+ добавить свой РИД