×
20.06.2016
217.015.0428

Результат интеллектуальной деятельности: НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. 4 ил.
Основные результаты: Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоски (Фотонные структуры и их использование для измерения параметров материалов. Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Известия вузов. Электроника 2008, №5, с.25-32).

Недостатком данного фотонного кристалла является большой продольный размер, а также ограниченность области применения только малыми и средними уровнями мощности СВЧ-колебаний.

Эти недостатки частично устранены в фотонном кристалле в виде отрезка волновода, содержащего семислойную структуру, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из фторопласта толщиной 44 мм (Резонансные особенности в разрешенных и запрещенных зонах сверхвысокочастотного фотонного кристалла с нарушением периодичности. Д. А. Усанов, С. А. Никитов, А. В. Скрипаль, Д. В. Пономарев. Радиотехника и электроника 2013, т.58, №11, с.1071-1076).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 4 раза длину волны СВЧ-излучения.

Наиболее близким по габаритным размерам к предлагаемому является фотонный кристалл в виде отрезка волновода, содержащего структуру из 11 слоев, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из пенопласта толщиной 12 мм (см. патент на изобретение RU №2407114, МПК Н01Р 1/00).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 2 раза длину волны СВЧ-излучения.

Задачей настоящего изобретения является создание СВЧ фотонного кристалла с продольным размером, меньшим длины волны основного типа.

Техническим результатом является уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа.

Указанный технический результат достигается тем, что низкоразмерный волноводный фотонный кристалл выполнен в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, согласно решению четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Предлагаемое устройство поясняется чертежами: на фиг.1 представлена модель фотонного кристалла, на фиг.2 - расчетные частотные зависимости коэффициента пропускания (непрерывная кривая) и отражения (пунктирная кривая) низкоразмерного фотонного кристалла с диэлектрическими слоями из фторопласта, на фиг.3 - расчетная и экспериментальная частотные зависимости коэффициента отражения низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола, на фиг.4 - расчетная и экспериментальная частотные зависимости коэффициента пропускания низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола. Позициями на фиг.1 обозначены:1 - отрезок прямоугольного волновода, 2 - верхняя стенка волновода, 3 - диэлектрические слои, 4 - нижняя стенка волновода, 5 - тонкие металлические пластины, S - величина зазора, h - толщина слоя диэлектрика.

Сущность изобретения заключается в том, что в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Оригинальность предлагаемого решения заключается в том, что толщина всех слоев периодической структуры предлагаемого волноводного фотонного кристалла существенно меньше длины волны основного типа в волноводе, при этом в качестве четных слоев используются диэлектрические слои, полностью заполняющие поперечное сечение волновода, а в качестве нечетных элементов - тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода.

Низкоразмерный волноводный фотонный кристалл представляет собой отрезок волновода, который содержит элементы, периодически чередующиеся в направлении распространения электромагнитного излучения.

Четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода. Толщина диэлектрических слоев h определяется по формуле:

,

где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - диэлектрическая проницаемость диэлектрика, k - численный коэффициент.

Нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла.

Теоретическое обоснование достижения положительного эффекта.

Возможность значительного уменьшения размеров предложенного СВЧ фотонного кристалла по сравнению с известными волноводными СВЧ фотонными кристаллами обосновывается предложенной физической моделью, состоящей в том, что взаимодействие в предложенном устройстве осуществляется не по основному типу волны, а по высшим типам, источником которых является зазор между металлической пластиной и широкой стенкой волновода. В последующем элементе зазор между металлической пластиной и широкой стенкой волновода расположен у противоположной стенки волновода, так что напротив возбуждающихся на зазоре высших типов волн находится металлическая отражающая стенка. В результате этого создаются условия для существования резонанса на высших типах волн. Длины волн высших типов существенно меньше длины волны основного типа. Следствием этого является уменьшенный общий размер фотонного кристалла.

Справедливость предложенной модели обоснована результатами численного моделирования и проведенными измерениями. Численное моделирование осуществлялось с использованием метода конечных элементов в САПР Ansoft HFSS.

Исходя из минимального количества тонких металлических пластин равного 5, необходимых для получения в спектре волноводного ФК «разрешенной» и «запрещенной» зон, можно определить максимальную толщину hmax диэлектрических слоев волноводной фотонной структуры, продольный размер которой не превышает длину волны основного типа в волноводе λ, по формуле

hmax=λ /(m1-1),

где λ - длина волны основного типа в волноводе, m1 - количество тонких металлических пластин в структуре.

В результате численного моделирования было выявлено, что при соблюдении условий h ≤ hmax и ε ≤ 9,8, для получения в трехсантиметровом диапазоне длин волн в спектре пропускания предлагаемого волноводного фотонного кристалла «разрешенных» зон с потерями в интервале от 6% до 50% от глубины «запрещенной» зоны коэффициент k должен находиться в интервале значений от 3 до 9, а ширина зазора S - в интервале от 0,0125λ до 0,0625λ.

Пример практической реализации устройства.

Реализовывался фотонный кристалл 3-сантиметрового диапазона длин волн. Периодическая структура фотонного кристалла состояла из 9 слоев и размещалась в отрезке волновода сечением 23×10 мм. Четные слои структуры были выполнены из диэлектрика, полностью заполняющего поперечное сечение волновода. В качестве материала диэлектрика использовался пенополистирол (ε=1,02). Толщина диэлектрических слоев h составляла 3 мм. В качестве нечетных слоев фотонного кристалла использовались тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом располагались у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Металлические пластины изготовлены из алюминия. Толщина каждой пластины составляла 15 мкм. Минимальная величина толщины металлической пластины должна превышать толщину скин-слоя в выбранном диапазоне частот, а максимальная величина толщины металлической пластины должна быть меньше 0,001λ. Величина каждого из зазоров между металлическими пластинами и широкой стенкой волновода составляла 1 мм. Продольный размер созданного волноводного фотонного кристалла составил 12,25 мм.

Частотные зависимости коэффициентов отражения и пропускания полученной фотонной структуры измерялись в трехсантиметровом диапазоне длин волн с помощью векторного анализатора цепей AgilentPNA-LN5230A. На фиг. 2, 3 представлены расчетные и экспериментальные частотные зависимости коэффициентов отражения и пропускания созданного фотонного кристалла. Таким образом, длина волны основного типа, распространяющейся в полученном фотонном кристалле, более чем в 2 раза превысила его продольный размер.

Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
Источник поступления информации: Роспатент

Показаны записи 71-77 из 77.
25.08.2017
№217.015.cdc8

Способ определения толщины, электропроводности, эффективной массы, коэффициентов рассеяния носителей заряда, концентрации и энергии активации легирующей примеси полупроводникового слоя

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002619802
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.d7f7

Способ измерения параметров полупроводниковых структур

Использование: для одновременного определения толщины полуизолирующей подложки, толщины и удельной электропроводности нанесенного на нее сильнолегированного слоя и подвижности свободных носителей заряда в этом слое. Сущность изобретения заключается в том, что способ определения параметров...
Тип: Изобретение
Номер охранного документа: 0002622600
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
10.05.2018
№218.016.40ce

Способ повышения октанового числа

Изобретение относится к способу получения увеличения октанового числа бензина на 2,5-3 пункта, заключающемуся в пропускании бензина через пористую основу. Способ характеризуется тем, что данная основа содержит в себе адсорбирующий материал из многослойных углеродных нанотрубок, при этом для...
Тип: Изобретение
Номер охранного документа: 0002648985
Дата охранного документа: 29.03.2018
Показаны записи 101-110 из 117.
20.06.2019
№219.017.8dbd

Демультиплексор на магнитостатических волнах

Изобретение относится к радиотехнике, в частности к приборам СВЧ на магнитостатических волнах, и может быть использовано в качестве демультиплексора. Демультиплексор содержит подложку, с размещенными на ней первым и вторым протяженными микроволноводами из железоиттриевого граната, входную...
Тип: Изобретение
Номер охранного документа: 0002691981
Дата охранного документа: 19.06.2019
10.07.2019
№219.017.a9ad

Логический элемент инвертор-повторитель на магнитостатических волнах

Изобретение относится к логическим элементам на магнитостатических волнах. Технический результат - создание логического устройства типа инвертор/повторитель на поверхностных магнитостатических волнах с возможностью управления режимами работы. Для этого предложен логический элемент, который...
Тип: Изобретение
Номер охранного документа: 0002694020
Дата охранного документа: 08.07.2019
21.08.2019
№219.017.c1be

Функциональный элемент магноники

Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ),...
Тип: Изобретение
Номер охранного документа: 0002697724
Дата охранного документа: 19.08.2019
01.09.2019
№219.017.c5e1

Свч фотонный кристалл

Использование: для создания СВЧ фотонного кристалла. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего периодически чередующиеся в направлении распространения электромагнитного излучения металлические элементы, по крайней...
Тип: Изобретение
Номер охранного документа: 0002698561
Дата охранного документа: 28.08.2019
17.10.2019
№219.017.d660

Функциональный компонент магноники на многослойной ферромагнитной структуре

Использование: для конструирования приборов на магнитостатических волнах. Сущность изобретения заключается в том, что функциональный компонент магноники содержит подложку из немагнитного диэлектрика, ферромагнитные слои железоиттриевого граната (ЖИГ), микрополосковые преобразователи для...
Тип: Изобретение
Номер охранного документа: 0002702915
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d66d

Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности

Использование: для пространственного разделения СВЧ-сигналов разного уровня мощности. Сущность изобретения заключается в том, что устройство на магнитостатических волнах включает микроволноводную структуру, содержащую слой железо-иттриевого граната (ЖИГ) на подложке из галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002702916
Дата охранного документа: 14.10.2019
21.11.2019
№219.017.e44b

Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла

Изобретение относится к радиотехнике, в частности к фильтрам. Многоканальный фильтр СВЧ-сигнала содержит размещенную на подложке ферромагнитную пленочную структуру, сопряженную с входным и выходными преобразователями поверхностных магнитостатических волн (ПМСВ), источники управляющего внешнего...
Тип: Изобретение
Номер охранного документа: 0002706441
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e7b3

Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах. Технический результат заключается в создании мультиплексора ввода-вывода с возможностью управления режимами работы устройства за счет изменения конфигурации распределения внутреннего магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002707391
Дата охранного документа: 26.11.2019
01.12.2019
№219.017.e841

Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации

Изобретение относится к радиотехнике, в частности к делителям сигналов. Делитель мощности СВЧ сигнала на магнитостатических волнах содержит размещенную на подложке микроволноводную структуру на основе пленки железо-иттриевого граната (ЖИГ), входной и два выходных порта, связанных с...
Тип: Изобретение
Номер охранного документа: 0002707756
Дата охранного документа: 29.11.2019
06.02.2020
№220.017.ff3f

Способ диагностики состояния сосудов по форме пульсовой волны

Изобретение относится к медицине и может быть использовано для измерения и анализа состояния артериальной сосудистой системы по форме пульсовой волны, регистрируемой осциллометрическим методом, и проведения скрининговой диагностики состояния артериальной сосудистой системы человека. Проводят...
Тип: Изобретение
Номер охранного документа: 0002713157
Дата охранного документа: 04.02.2020
+ добавить свой РИД