×
20.06.2016
217.015.0398

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОСТЕРЖНЕЙ ДИОКСИДА МАРГАНЦА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в неорганической химии и нанотехнологии. Для получения наностержней диоксида марганца смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении , равном 2:(1-5), до образования однородной дисперсной фазы в сильнощелочном растворе. Затем при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения pH 2-0,5. Полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5-25 мин при 90-170°C, давлении 1-20 атм и мощности микроволнового нагрева 150-1000 Вт. Полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C. Получают кристаллический пиролюзит, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм. В качестве неорганической кислоты используют HSO или HNO. Изобретение позволяет получать наностержни β-MnO для использования в литиевых источниках тока в качестве катодного материала с высокой производительностью и относительно высокой однородностью фракций по диаметру стержней. 1 з.п. ф-лы, 2 ил., 1 табл., 5 пр.

Изобретение относится к неорганической химии, конкретно к получению нанокристаллического диоксида марганца, полиморфные модификации которого, имеющие разнообразные морфологические формы, могут быть успешно использованы в составе катализаторов, биосенсоров, адсорбентов и особенно в источниках тока.

Основными структурными единицами полиморфных модификаций диоксида марганца являются октаэдры MnO6, различное взаимное сочленение которых приводит к формированию в структуре MnO2 слоев и каналов. Именно наличие каналов делает MnO2 интересным с точки зрения создания катодных материалов. Наименьшее содержание примесей в MnO2 характерно для пиролюзита (β-MnO2) и рамсделита (γ-MnO2). Для других модификаций MnO2 (α, λ, ε и δ) крайне характерно присутствие в их кристаллической структуре ионов Na+и K+.

В настоящее время актуальной задачей является разработка методов получения наностержней MnO2 β-модификации, представляющих большой практический интерес, ввиду того, что характерная для них анизотропия проводимости может приводить к появлению принципиально новых конструктивных решений при создании аккумуляторных элементов [Xu M.-W., Bao S.-J. // Energy Storage in the Emerging Era of Smart Grids; In tech: 2011; V. 12, P. 251-278].

Из [RU 2536649] известно, что при заряде и разряде Li-ионных аккумуляторов имеют место топотактические реакции, они состоят в инжекции электрона и внедрении катиона Li в твердую матрицу без разрушения внутренней структуры материала. Однако интеркаляция ионов Li в структуру материала может привести к существенным изменениям в строении материала: образование новой фазы, увеличение объема кристаллической ячейки, «вспучиванию» и т.п.

Материал, состоящий из однородных наностержней, в большей степени пригоден для интеркаляции ионов лития, поскольку он не будет испытывать серьезных структурных напряжений при прохождении катиона Li+ по каналам в структуре MnO2.

Известен способ [Xun Wang and Yadong Li // Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods, Chem. Eur. J: 2003, V. 9, №1, P. 19141-19147] получения наностержней диоксида марганца, заключающийся в том, что соли (NH4)2S2O8 и MnSO4·H2O растворяют в дистиллированной воде при комнатной температуре и перемешивают до образования однородного раствора. После чего его переносят в автоклав и подвергают гидротермальной обработке при температуре 140°C в течение 12 ч. Полученный продукт фильтруют, промывают дистиллированной водой и высушивают на воздухе. Образование наностержней α- и β-модификаций диоксида марганца проходит через промежуточную стадию образования δ-модификации диоксида марганца с пластинчатой морфологией.

Недостатком данного способа является то, что получаемая β-модификация диоксида марганца содержит примесь δ-модификации, имеющей слоистую структуру, что ухудшает фазовую однородность материала, необходимую при использовании в электрохимических ячейках.

Также недостатком этого метода является относительно высокая продолжительность синтеза.

Известен способ получения наностержней диоксида марганца, изложенный в [М. Wei, Y. Konishi, Н. Zhou, Н. Sugihara and Н. Arakawa // Synthesis of single-crystal manganese dioxide nanowires by soft chemical process, Nanotechnology: 2005, V. 16, P. 245-249] (прототип), заключается в том, что коммерческий γ-MnO2 смешивают с водой, и полученную суспензию подвергают гидротермальной обработке при температуре 140-200°C в течение 72 дней. Полученный продукт фильтруют, промывают водой и высушивают при температуре 60°C в течение 4 ч.

Существенным недостатком является относительно невысокая морфологическая однородность получаемого продукта.

Недостатком предложенного способа также является слишком большая продолжительность синтеза.

Техническая задача связана с тем, что коммерческий успех современных катодных материалов в значительной степени зависит от метода их получения, который должен обеспечивать возможность контроля морфологии и размера частиц.

Изобретение направлено на изыскание высокопроизводительного способа получения наностержней β-MnO2 для использования в литиевых источниках тока в качестве катодного материала с относительно высокой однородностью фракции по диаметру стержней, что значительно улучшает процесс интеркаляции ионов Li в структуру катодного материала.

Технический результат достигается тем, что предложен способ получения наностержней диоксида марганца, заключающийся в том, что смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении , равном 2:1÷5, до образования однородной дисперсной фазы в сильнощелочном растворе, после чего к нему при постоянном перемешивании медленно прикапывают неорганическую кислоту до достижения значения pH от 2 до 0,5, полученную суспензию помещают в тефлоновый автоклав, который устанавливают в гидротермально-микроволновую установку на 5÷25 мин при 90÷170°C при давлении 1÷20 атм и мощности микроволнового нагрева 150÷1000 Вт, полученный осадок отделяют декантацией, промывают дистиллированной водой и высушивают на воздухе при температуре не выше 70°C, в результате получают кристаллический пиролюзит β-MnO2, частицы которого имеют форму стержней диаметром свыше 10 нм и длиной до 2 мкм.

Целесообразно, что в качестве неорганической кислоты используют либо H2SO4, либо HNO3.

Мольные соотношения , равные 2:1÷5, выбирают из тех соображений, что при них образуется однородная дисперсная фаза.

Выбор диапазона кислотности обусловлен тем, что в среде с pH>2 в конечном продукте присутствует посторонняя примесь наночастиц δ-MnO2, которые характеризуются сфероидальной формой и шероховатой поверхностью, а при pH<0,5 в конечном продукте также присутствует посторонняя фаза.

Заявленный временной интервал 5÷25 минут определяется динамикой процесса формирования кристаллов, который в целом начинается с 5 минут и завершается через 25 минут, после чего линейные размеры наностержней не изменяются и улучшения функциональных свойств нанокристаллов не происходит.

Заявленный температурный интервал гидротермально-микроволновой обработки определен экспериментальным путем и является оптимальным для получения однородной фазы наностержней диоксида марганца, содержащей в своем составе кристаллы диаметром менее 100 нм. Минимальная температура автоклавной обработки обусловлена тем, что ниже 90°C наностержни не образуются. Верхний предел температуры обусловлен тем, что при температурах выше 170°C в получаемом конечном продукте качественных изменений не происходит. Оптимальным является автоклавная обработка в течение 8 минут при 150°C, при которой в конечном продукте однородность фракции 20÷25 нм составляет 90%.

В качестве гидротермально-микроволновой установки используют аппаратуру Berghof Speedwave MWS four, характеризующуюся давлением R20 атм и мощностью микроволнового нагрева 150÷1000 Вт.

Сущность изобретения заключается в том, что варьирование кислотности среды, продолжительности и температуры синтеза позволяет получать продукты с заданными параметрами однородности.

Изобретение проиллюстрировано следующими микрофотографиями.

Фиг. 1. Результаты растровой электронной микроскопии образца диоксида марганца, полученного по предложенному изобретению гидротермально микроволновой обработкой (ГТМВ) в течение 8 мин при 150°C из реакционной смеси с рН=1 (пример 1).

Фиг. 2. Результаты растровой электронной микроскопии образца диоксида марганца, полученного по прототипу.

Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.

Пример 1

0,3 г KMnO4 растворяли в 38 мл дистиллированной воды, затем к полученному раствору добавляли 0,19 г NaNO2 (мольное соотношение составляло 2:3), после чего к смеси при постоянном перемешивании медленно прикапывали 0,5М H2SO4 до достижения рН=1. Полученную суспензию помещали в тефлоновый автоклав емкостью 100 мл (степень заполнения составляла 50%) и подвергали гидротермально-микроволновой обработке в установке Berghof Speedwave MWS four в течение 8 мин при 150°C. После завершения обработки автоклав извлекали и охлаждали на воздухе. Образовавшийся осадок отделяли декантацией, несколько раз промывали дистиллированной водой и сушили на воздухе при относительной влажности ~75% и температуре 60°C. Получали продукт с однородностью фракции 95% нм и диаметром наностержней 20÷25 нм.

Примеры 2-5 осуществляли по Примеру 1, меняя мольное соотношение реагентов, кислотность среды, время и температуру синтеза. Результаты сведены в Таблицу: «Показатель однородности фракции наностержней диоксида марганца, синтезированных по предлагаемому способу».

Предлагаемый способ позволяет получать наностержни β-MnO2 с достаточно высокой производительностью, а также с относительно высокой однородностью фракции по диаметру стержней, что определяет пригодность их применения в катодных материалах.


СПОСОБ ПОЛУЧЕНИЯ НАНОСТЕРЖНЕЙ ДИОКСИДА МАРГАНЦА
СПОСОБ ПОЛУЧЕНИЯ НАНОСТЕРЖНЕЙ ДИОКСИДА МАРГАНЦА
СПОСОБ ПОЛУЧЕНИЯ НАНОСТЕРЖНЕЙ ДИОКСИДА МАРГАНЦА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 54.
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
Показаны записи 21-30 из 41.
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
+ добавить свой РИД