×
10.08.2016
216.015.5626

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-СКАНДИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку. Перед расплавлением смеси в нее добавляют фторид калия, одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающем заданное содержание скандия в получаемой лигатуре, а после выгрузки лигатуры в расплав загружают алюминий. Предлагаемый способ позволяет получать лигатуру алюминий-скандий при пониженных температурах (800-850°С), упрощает технологию, способствует снижению энергозатрат. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий в условиях промышленного производства.

Известно, что добавка даже десятых долей скандия в алюминий значительно улучшает его технологические свойства: увеличивает прочность на 40%, пластичность на 50%, коррозионную стойкость в 10 раз, температурный интервал устойчивой работы сплавов возрастает на 100-500°С. Алюминиевые сплавы со скандием обладают сочетанием уникальных свойств: хорошей свариваемостью, возможностью деформироваться в режиме сверхпластичности, высокими механическими свойствами и др.

С развитием новых технологий, автомобилестроения, авиастроения и аэрокосмической отрасли спрос на сплавы алюминий-скандий с каждым годом растет. В настоящее время основная проблема использования скандия в производстве деформируемых алюминиевых сплавов заключается в высокой стоимости представленных на рынке лигатур алюминий-скандий.

Предлагаемое изобретение относится к области металлургии цветных металлов, в частности к технологии получения лигатур алюминий-скандий, применяемых для получения и модифицирования конечных алюминиевых сплавов.

Известен способ получения лигатуры алюминий-скандий с содержанием скандия 1,82-1,84 мас. %, включающий расплавление и выдержку в контакте с жидким алюминием при 820°С шихты следующего состава: хлорид калия, фториды натрия и алюминия, оксид скандия; возможно также включение алюминия в виде гранул, мелкораздробленной стружки (патент RU 2124574, C22C 1/03, опубл. 10.01.1999).

Недостатками способа являются сложность, неэффективность в приготовлении шихты, невысокое качество лигатуры, а также зашламление оксидно-солевой шихты оксидом алюминия, который образуется в результате алюмотермической реакции алюминия с оксидом скандия.

Известен способ получения лигатуры алюминий-скандий с содержанием скандия 1,5-30 мас. % алюмотермическим восстановлением фторида скандия, при соотношении в шихте ScF3:Al 1:(1,6-8) в три ступени с постепенным повышением температуры (авторское свидетельство SU 873692, C22C 1/03, опубл. 30.11.1983).

Недостатками известного способа является высокая (до 1300°С) температура, необходимая для полного восстановления фторида скандия, и длительность процесса (5-6 часов). Кроме того, к недостаткам следует отнести получение в конечном продукте субфторида алюминия AlF, который при охлаждении диссоциирует с образованием мелкодисперсного алюминия. Последний при разгерметизации восстановительной камеры окисляется с выделением большого количества энергии.

Наиболее близким к предлагаемому способу является способ получения сплавов и лигатур алюминий-скандий с содержанием скандия 0,4 мас. % (Цветные металлы, 1998, №7, с. 43-46) при электролизе криолит-глиноземного расплава (NaF-AlF3-Al2O3) с добавками оксида скандия.

Общими признаками известного и заявляемого способа являются ведение электролиза оксидно-галогенидного расплава, содержащего фторид натрия, фторид алюминия и оксид скандия, и алюмотермическое восстановление скандия.

Недостатками способа являются относительно высокая температура процесса (960-1000°С) и расход дополнительной электроэнергии на катодное осаждение скандия.

Задачей изобретения является упрощение технологии, создание способа непрерывного получения лигатуры алюминий-скандий с заданным составом.

При этом техническим результатом являются снижение температуры и энергозатрат процесса, а также регенерация оксидно-галогенидного расплава (электролитическое разложение образующегося в ходе реакции глинозема) и как следствие отсутствие отходов в виде отработанного флюса.

Технический результат достигается за счет того, что в способе получения лигатуры алюминий-скандий, включающем приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида с получением лигатуры алюминий-скандий и ее выгрузку, перед расплавлением смеси, в нее добавляют фторид калия (KF), одновременно проводят алюмотермическое восстановление скандия и электролитическое разложение образующегося в ходе алюмотермической реакции глинозема, при этом подачу оксида скандия в расплав производят непрерывно, поддерживая концентрацию оксида скандия на уровне, обеспечивающем заданное содержание скандия в получаемой лигатуре а после выгрузки лигатуры, в расплав загружают алюминий.

Дополнительными признаками, способствующими достижению заявляемого технического результата, являются:

Приготовленную расплавленную смесь используют по меньшей мере в двух циклах получения лигатуры.

Концентрацию оксида скандия в электролите поддерживают 1-4 мас. %.

Расплавленная смесь содержит 1-40 мас. % KF.

Электролиз расплавленной смеси проводят при температуре 800-850°С.

Сущность предлагаемого способа заключается в следующем. При контакте оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксид скандия в количестве 1-4 мас. % происходит алюмотермическое восстановление скандия, в результате которого образуется лигатура алюминий-скандий с содержанием скандия 0,4-0,8 мас. %. При этом в расплаве происходит уменьшение концентрации оксида скандия и накопление (появление и увеличение концентрации) оксида алюминия (глинозема).

Суммарная алюмотермическая реакция процесса имеет следующий вид:

Содержание скандия в получаемой лигатуре определяется количеством загружаемого в расплав оксида скандия (Sc2O3), длительностью контакта алюминия с расплавом и константой скорости реакции (1).

Для непрерывного получения лигатуры алюминий-скандий периодически выгружают полученную лигатуру алюминий-скандий, после этого в расплав подгружают порцию чистого алюминия. При получении лигатуры непрерывно подают оксид скандия, а образующийся в расплаве оксид алюминия подвергают электролитическому разложению (электролизу). Максимальная сила тока на электролизере определяется исходя из скорости выгрузки лигатуры и скорости подачи оксида скандия в расплав. Минимальная сила тока подбирается исходя из площади алюминиевого катода и катодной плотности тока, необходимой для поддержания катодного выхода по току на высоком уровне.

Электролитическое разложение оксида алюминия происходит с использованием углеродного анода и алюминиевого катода. Суммарная реакция этого процесса имеет следующий вид:

Способ позволяет получать лигатуру алюминий-скандий при пониженных температурах (800-850°С), при этом можно многократно получать лигатуру из одного и того же расплава периодически заменяя в нем алюминий, что ведет к упрощению технологии, снижению энергозатрат на поддержание температуры процесса. Снижение температуры процесса в заявляемом способе также приводит к увеличению степени извлечения скандия.

Заявляемый способ может быть реализован с помощью экспериментальной установки, представленной на фигуре.

Расплав, содержащий 39 массовых % KF, 10 массовых % NaF, 51 массовых % AlF3 вместе с расплавленным алюминием 1 помещают в графитовый тигель 2 экспериментальной установки. В состав установки также входят нагревательные элементы 3, футеровка 4 и металлический кожух 5. Расплав нагревают до температуры 800-850°С, затем из бункера 6 в расплав непрерывно подают оксид скандия, одновременно пропуская через расплав электрический ток. Полученную лигатуру алюминий-скандий 7 извлекают из тигля, после этого добавляют расплавленный алюминий и продолжают вести процесс получения лигатуры, непрерывно подавая оксид скандия и пропуская электрический ток.

Предлагаемый способ опробован в экспериментальной установке вместимостью до 10 кг, рассчитанной на силу тока до 100 А. Лигатуру алюминий-скандий, содержащую 0,4-0,8 мас. % скандия, получали путем электролиза галогенидного расплава (мас. %) 39KF-10NaF-51AlF3 с добавкой 1-4 мас. % Sc2O3. Расплав солей массой 3,3 кг и алюминий марки А99 массой 6.7 кг помещали в графитовый тигель экспериментальной установки и нагревали до температуры 800-850°С. После плавления смеси в расплав добавляли оксид скандия.

При концентрации оксида скандия в расплаве от 1 до 4 мас. % и без протекания электрического тока время достижения близкой к равновесной концентрации скандия в алюминии по алюмотермической реакции (1) не превышает 30 мин. При этом полнота протекания алюмотермической реакции (1) составляет 30-60%.

Для электролитического разложения образовавшегося оксида алюминия через расплав солей пропускали электрический ток величиной 50-100 А. Исходя из величины катодной и анодной плотностей токов, которые составляли 0,3-0,7 А/см2 и 0,4-0,5 А/см2, соответственно, подбирали размеры графитового анода и алюминиевого катода. После приготовления алюминиево-скандиевой лигатуры, для организации непрерывного процесса, часть алюминиево-скандиевой лигатуры из тигля извлекали, а чистый алюминий и оксид скандия загружали.

Предлагаемый способ позволяет реализовать непрерывное получение алюминиево-скандиевой лигатуры с содержанием скандия 0,4-0,8 мас. % с применением электролиза оксидно-галогенидного расплава, содержащего фториды калия, натрия и алюминия, а также оксид скандия в количестве 1-4 мас. %.


СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-СКАНДИЙ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 252.
24.08.2019
№219.017.c39f

Перфорированный металлический инертный анод для получения алюминия электролизом расплава

Изобретение относится к перфорированному аноду для электролитического получения алюминия электролизом фторидных расплавов. Анод выполнен в виде перфорированной структуры, образованной продольными и поперечными анодными элементами, которые пересекаются друг с другом и ограничены боковыми...
Тип: Изобретение
Номер охранного документа: 0002698162
Дата охранного документа: 22.08.2019
24.08.2019
№219.017.c3ab

Шихта для получения ферросилиция

Изобретение относится к области металлургии, в частности к электротермическому получению кремнистых ферросплавов. Шихта для получения ферросилиция содержит, мас.%: кварцит 22,0 - 46,7; углеродистый восстановитель 30,3 - 33,4; стальную стружку 7,3 - 7,7; шлак рафинирования технического кремния...
Тип: Изобретение
Номер охранного документа: 0002698161
Дата охранного документа: 22.08.2019
27.08.2019
№219.017.c3c7

Композиционный материал на основе алюминия (варианты) и изделие из него

Изобретение относится к материалам для защиты от радиационного излучения, обладающим повышенной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения, и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и...
Тип: Изобретение
Номер охранного документа: 0002698309
Дата охранного документа: 26.08.2019
29.08.2019
№219.017.c477

Огнеупорная бетонная смесь

Изобретение относится к области металлургии, в частности, применяется для футеровки металлургических агрегатов, например сталеразливочных ковшей, промежуточных ковшей, вакууматоров, для изготовления формованных огнеупоров методом вибролитья и т.д., работающих при температуре до 1750°С....
Тип: Изобретение
Номер охранного документа: 0002698390
Дата охранного документа: 26.08.2019
01.11.2019
№219.017.dca8

Система непрерывного контроля температуры контактов масляных выключателей

Изобретение относится к области электротехники, в частности к системам контроля параметров масляных выключателей среднего напряжения. Технический результат заключается в повышении контроля температуры рабочих контактов масляных выключателей среднего напряжения. Достигается тем, что система...
Тип: Изобретение
Номер охранного документа: 0002704606
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dcbb

Способ модифицирования чугуна и модификатор для осуществления способа

Изобретение относится к металлургии и литейному производству и может быть использовано для производства модифицированного чугуна для изготовления быстроизнашивающихся деталей машин. Способ включает получение расплава чугуна, перелив расплава в ковш и введение в ковш модификатора. В качестве...
Тип: Изобретение
Номер охранного документа: 0002704678
Дата охранного документа: 30.10.2019
13.12.2019
№219.017.eceb

Литейный алюминиевый сплав

Изобретение относится к области металлургии и может быть использовано для получения фасонных отливок гравитационным литьем в кокиль, литьем под давлением, кристаллизацией под давлением, используемых в автомобилестроении, для корпусов электронных устройств, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002708729
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.f008

Сорбционный аппарат

Изобретение относится к устройствам для сорбционного извлечения полезных компонентов из растворов и пульп и может быть использовано в гидрометаллургии редких, цветных и благородных металлов. Сорбционный аппарат содержит корпус, эрлифт, циркулятор, диспергатор, патрубки для ввода и вывода пульпы...
Тип: Изобретение
Номер охранного документа: 0002709556
Дата охранного документа: 18.12.2019
27.01.2020
№220.017.fa85

Способ получения галлатного раствора

Изобретение относится к области металлургии редких металлов, а именно к способам извлечения галлия из щелочных галлийсодержащих растворов, в том числе оборотных растворов глиноземного производства. Галлатный раствор получают из щелочного галлийсодержащего раствора. Проводят сорбцию галлия из...
Тип: Изобретение
Номер охранного документа: 0002712162
Дата охранного документа: 24.01.2020
01.02.2020
№220.017.fc4f

Кристаллизатор для непрерывного литья заготовки

Изобретение относится к непрерывному литью металла. Кристаллизатор содержит литейное колесо (6) с открытым каналом на наружной поверхности, прилегающую к нему непрерывную ленту (4), закрывающую открытый канал, и систему охлаждения. Поперечное сечение открытого канала – равнобедренная трапеция с...
Тип: Изобретение
Номер охранного документа: 0002712683
Дата охранного документа: 30.01.2020
Показаны записи 221-230 из 245.
04.06.2020
№220.018.2405

Сенсор для измерения кислородосодержания расплава licl-lio-li и атмосферы над расплавом

Изобретение относится к аналитической технике и может быть использовано в технологиях переработки оксидного ядерного топлива преимущественно в замкнутом ядерном топливном цикле. Сенсор содержит пробирку из твердого электролита, эталонный электрод, токосъемник с эталонного электрода, токосъемник...
Тип: Изобретение
Номер охранного документа: 0002722613
Дата охранного документа: 02.06.2020
07.06.2020
№220.018.251d

Сплав на основе алюминия и способ получения изделия из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-магний-кремний, используемым в различных областях промышленности. Cплав на основе алюминия содержит, мас.%: магний 0,80-1,10, кремний 0,85-1,20, марганец...
Тип: Изобретение
Номер охранного документа: 0002722950
Дата охранного документа: 05.06.2020
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
24.07.2020
№220.018.35ed

Способ рециклинга футеровочного материала катодного устройства электролизера и устройство для его осуществления

Изобретение относится к способу рециклинга отработанного футеровочного материала электролизера для производства первичного алюминия для футеровки катодных устройств электролизеров. Способ включает вырезание технологического окна в нижней части торцевой стенки кожуха катодного устройства...
Тип: Изобретение
Номер охранного документа: 0002727377
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.43c7

Литейный алюминиевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, применяемых в автомобилестроении, для корпусов электронных устройств, для деталей ответственного...
Тип: Изобретение
Номер охранного документа: 0002793657
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4532

Элементарная ячейка литий-ионного аккумулятора и аккумулятор на ее основе

Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по...
Тип: Изобретение
Номер охранного документа: 0002759843
Дата охранного документа: 18.11.2021
24.04.2023
№223.018.5246

Способ получения связующего пека

Настоящее изобретение относится к способу получения нефтекаменноугольного связующего пека с пониженным содержанием бенз[а]пирена для получения анодной массы алюминиевых электролизеров, нефтекаменноугольному связующему пеку, анодной массе и продукту металлургической или электродной...
Тип: Изобретение
Номер охранного документа: 0002744579
Дата охранного документа: 11.03.2021
12.05.2023
№223.018.5464

Способ электроосаждения сплошных осадков кремния из расплавленных солей

Изобретение относится к получению сплошных осадков кремния для использования в качестве фоточувствительных материалов, устройств микроэлектроники и накопления энергии. Способ электроосаждения сплошных осадков кремния из расплавленных солей включает электролиз в инертной атмосфере галогенидного...
Тип: Изобретение
Номер охранного документа: 0002795477
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.590c

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
15.05.2023
№223.018.590d

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
+ добавить свой РИД