×
10.08.2016
216.015.549d

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ВНУТРИМЫШЕЧНОЙ ИНЪЕКЦИИ НАНОДИСПЕРСНОГО ЖЕЛЕЗА НА ПРОДУКТИВНОСТЬ И МЕТАБОЛИЗМ ЦЫПЛЯТ-БРОЙЛЕРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сельского хозяйства и предназначено для повышения продуктивности цыплят-бройлеров. Цыплятам-бройлерам в 14-дневном возрасте одноразово вводят инъекцию препарата наножелеза, который готовят путем смешивания наночастиц железа размером частиц 80,5±5,5 нм с физраствором в дозе: физраствора 200 мкл/гол, железа в дозировке 2 мг/кг живой массы. Способ эффективно повышает продуктивность и метаболизм цыплят-бройлеров. 4 табл., 1 пр., 2 ил.
Основные результаты: Способ повышения продуктивности цыплят-бройлеров, отличающийся тем, что цыплятам-бройлерам в 14-дневном возрасте одноразово вводят инъекцию препарата наножелеза, который готовят путем смешивания наночастиц железа размером частиц 80,5±5,5 нм с физраствором в дозе: физраствора 200 мкл/гол, железа в дозировке 2 мг/кг живой массы.

Изобретение относится к сельскому хозяйству, в частности к животноводству, и может быть использовано при внедрении нанотехнологий в отрасли птицеводства.

Нанодисперстные формы эссенциальных металлов и их соединений нашли широкое применение в животноводстве в качестве препаратов микроэлементов. Это определилось меньшей их токсичностью [1, 2, 3], более высокой биодоступностью из наноформ в сравнении с традиционными препаратами [4].

В этой связи определенный интерес представляют исследования, направленные на создание новых препаратов железа. Железодефицитная анемия сохраняется в качестве основного расстройства обмена веществ человека, затрагивая более 1 млрд жителей нашей планеты [5]. Сельскохозяйственные животные так же широко подвержены этому заболеванию.

Современная терапия железодефицитной анемии включает пероральные препараты железа, в том числе простые соли Fe+2, растворимые хелатные формы Fe+2 или Fe+3. Эти препараты имеют ряд недостатков: расстройства желудочно-кишечного тракта [6, 7], изменения состава микрофлоры в толстом кишечнике [8, 9]. Терапия железодефицитной анемии включает и внутримышечные инъекции препаратов. Недостатком этого метода являются негативные последствия для организма по причине образования активных форм кислорода в реакциях Фентона, Хабера-Вайса, Осипова.

Наночастицы железа и его соединения могут рассматриваться, как выгодная альтернатива существующим препаратам. Известны работы, демонстрирующие ростостимулирующие и ранозаживляющие эффекты наножелеза [10, 11], продемонстрирована перспектива наночастиц Fe+3 и в качестве пищевой добавки [12, 13].

Одним из направлений совершенствования нанопрепаратов является уточнение размера наночастиц вещества. Установлены различия в биологических свойствах наножелеза с разноразмерными частицами [14], уменьшение их размера повышает абсорбцию элемента [14]. В то же время известна связь токсичности наночастиц с их размерами [15, 16].

Однако комплексная оценка ростостимулирующего влияния частиц Fe на продуктивность, в частности на примере птиц, с учетом размерности нано- и микрочастиц, их дозировки, влияния на увеличение аргинина, как основного носителя азота, участвующего при перераспределении энергии между протеином и жиром в организме в сторону повышения продуктивности цыплят-бройлеров, с таких позиций в современных литературных источниках не представлена.

Материалы и методы

Наночастицы железа при проведении эксперимента были синтезированы методом высокотемпературной конденсации на установке Миген-3 в Институте энергетических проблем химической физики РАН г. Москвы [17].

Биологическая доступность и активность выбранных образцов была достоверно подтверждена в тесте ингибирования бактериальной биолюминесценции по существующему алгоритму [18].

Для синтеза использовано металлическое железо чистотой 99,99%. По итогам аттестации частиц установлено, что наночастицы железа размером 80±5 нм, содержат кристаллического металла в ядре частиц 96,0±4,5%, микрочастицы железа размером 9,8±0,4 мкм - чистота металла составляет 99,5%, агломераты наночастиц имели размер 923,7±29,6 нм.

В связи с поставленной целью исследования были проведены на цыплятах-бройлерах «Смена-7» в условиях вивария Оренбургского государственного университета, в соответствии с рекомендациями [19].

Для проведения исследований было приобретено 150 суточных курочек. По итогам десятидневных наблюдений за ростом и развитием было сформированы 4 группы цыплят по 30 голов. Вся птица находилась в одинаковых условиях кормления и содержания. В 14-дневном возрасте однократно внутримышечно (в бедро) цыплятам вводили: I группе - препарат наночастиц железа (80±5 нм); II - препарат агломератов наночастиц железа (923,7±29,6 нм); III - препарат микрочастиц железа (9,8±0,4 мкм); IV(контроль) - стерильный физраствор 200 мкл/гол. Препараты железа для инъекций готовили путем смешивания частиц с физраствором объемом 200 мкл. Полученный препарат стерилизовали ультрафиолетом, затем обрабатывали ультразвуком (частота 35 кГц; мощность - 300 (450) Вт, амплитуда колебаний - 10 мкм). Продолжительность ультразвуковой обработки для I и III групп - 30 минут, II группы - 20 сек. Дозировка железа составила 2 мг/кг живой массы птицы и обосновывалась ранее проведенными исследованиями [20].

В течение эксперимента цыплят ежедневно взвешивали.

Убой цыплят производился в 15-, 21- и 35-суточном возрасте (n=5). Это соответствовало 1, 7 и 21 суткам после инъекции.

На основании полученных данных рассчитывали отложение в теле цыплят протеина и жира по периодам.

Статистическую обработку полученных данных проводили с использованием программного пакета «Statistica 6.0». Полученные результаты достоверны при р≤0,05.

В исследованиях установлено ростостимулирующее действие препаратов железа.

Динамика разницы (%) по живой массе между контрольной и опытной группами цыплят-бройлеров представлена на фиг. 1.

Живая масса цыплят в I группе, спустя сутки после введения, была выше контрольных значений на 6,7%, через 10 суток на 8,06%, через 21 день после введения на 6,9%, максимальная разница в живой массе - 9,8% отмечалась на 4 сутки после инъекции.

Введение агломератов наночастиц железа во II группе сопровождалось достоверным увеличением живой массы на 10 и 17 сутки после введения (4,69%; 4,97%).

Ростостимулирующие эффекты были характерны и для препарата микрочастиц железа, однако изменения были отмечены только на 3 неделе после введения микрочастиц (+7,8%).

Механизм ростостимулирующего эффекта препаратов наночастиц железа может быть объяснен изменениями метаболизма в теле цыплят.

В I группе отмечено повышение концентрации железа в сыворотке крови через сутки на 15,8%, через 7 суток на 5,15%. На 21 сутки содержание железа в сыворотке было увеличено только в третьей группе на 8,71% (табл. 1).

Ростостимулирующее действие препаратов железа определялось изменениями в метаболизме. Это отмечалось по динамике концентрации общего белка в сыворотке крови (табл. 1). Аналогичным образом изменялось общее содержание протеина в теле цыплят (табл. 2).

Содержание протеина в теле цыплят I группы в 15 суток превышало уровень контроля на 5,5%, в 21 сутки на 16,2%, в 35 на 3,1%. Эта разница и определила больший прирост массы I опытной группы. Отложение в организме одного грамма белка привело к повышению массы тела на величину 4,96-5,16 грамм [26].

С целью проверки связи обмена аргинина с действием наночастиц металлов изучен аминокислотный состав печени. Массовая доля аргинина в печени была определена методом капиллярного электрофореза на приборе «Капель».

Влияние наночастиц железа в I группе сопровождалось достоверным увеличением процента аргинина в печени по сравнению с контрольной группой спустя сутки на 2,25%, через 7 суток после введения на 3,78%.

Разница содержания аргинина (%) в печени цыплят в возрасте 15, 21 и 35 суток представлена на фиг 2.

Во II группе повышение содержания аргинина отмечалось через 7 суток после введения на 2,08%, в III - только через 21 сутки после инъекций на 3,86%.

Известно, что аргинин является наиболее распространенным носителем азота и основным фактором, регулирующим максимальный рост молодых животных [21, 22]. Увеличение содержания аргинина в печени сопровождалось перераспределением энергии между протеином и жиром в организме цыплят. Ранее [23] на модели цыплят-бройлеров показано снижение массы брюшной жировой ткани и циркулирующих липидов под влиянием добавок диетического аргинина. В наших исследованиях мы отмечали тенденцию к снижению отложения жира в приросте массы тела цыплят I группы с 15 по 21 сутки (табл. 3).

Повышение концентрации аргинина в печени могло стать следствием активизации синтеза макрофагов в ответ на введение частиц железа. Известно, что путем синтеза полиаминов и белка аргинин определяет пролиферацию моноцитов и лимфоцитов [24]. В наших исследованиях количество моноцитов достоверно увеличивалось спустя сутки после инъекций на 16,3 и 12% в первой и третьей группах соответственно, в 2,17 раза во второй группе относительно контроля. Содержание моноцитов через 7 суток после введения высокодисперсных частиц железа было выше, чем в контроле, на 5,56 и 8,89% в первой и третьей группах, в 1,53 раза во второй группе. Уровень моноцитов в 35-дневном возрасте опытной птицы был увеличен только в третьей группе на 2,19%.

Подводя итог результатам наших исследований, следует отметить влияние размера частиц железа на рост и развитие цыплят. В эксперименте отмечено ростостимулирующее действие препаратов железа на различных сроках после внутримышечной инъекции, в зависимости от размеров частиц. При этом отмечались изменения в организме цыплят. Повышение интенсивности роста сопровождалось увеличением массы протеина в приросте цыплят, нарастанием концентраций аргинина в печени, закономерным увеличением концентрации моноцитов в крови.

Таким образом, при оценке безопасности внутримышечной инъекции цыплятам-бройлерам в 14-дневном возрасте продуктивность к 21-дневному возрасту возрастает на 6,1% за счет достоверного увеличения аргинина в печени птицы на 3,78%, участвующего как основной носитель азота при перераспределении энергии между протеином и жиром в сторону увеличения среднесуточного прироста на 21,7% при снижении затрат корма на единицу прироста живой массы за 35 дней на 7,4% по сравнению с контролем (табл. 4).

Увеличение аргинина действием инъекции наночастиц железа в дозе 2 мг/кг живой массы сохраняется в течение 21 суток, до срока производственной реализации (рис. 2).

Список литературы

1. Zhang J, Wang H, Yan X, Zhang L. 2005.Comparison of short-term toxicity between Nano-Se and selenite in mice.LifeSci. Jan 21; 76(10):1099-109.

2. Hao L, Wang Z, Xing B. 2009.Effect of sub-acute exposure to ТiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinuscarpio).J EnvironSci (China).; 21(10): 1459-66.

3. Wang H, Sun X, Liu Z, Lei Z. 2014.Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes.Nanoscale. May 7.

4. Rohner F, Ernst FO, Arnold M, Hilbe M, Biebinger R, Ehrensperger F, Pratsinis SE, Langhans W, Hurrell RF, Zimmermann MB. 2007. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J Nutr.Mar; 137(3):614-9.

5. World Health Organization 2008. Global Database on Anaemia, World Health Organization, Geneva, Switzerland.

6. Cancelo-Hidalgo M. J., Castelo-Branco С, Palacios S., Haya-Palazuelos J., Ciria-Recasens M., Manasanch J., Pérez-Edo L. 2013. Tolerability of different oral iron supplements: a systematic review. Curr. Med. Res. Opin.29, 291-303.

7. Peña-Rosas Juan P., De-Regil Luz M., Dowswell T., Viteri Fernando E. 2012. Daily oral iron supplementation during pregnancy. In Cochrane Database of Systematic Reviews, John Wiley & Sons, Ltd., Chichester, UK.Zimmermann M.В.

8. Zimmermann M.B., Chassard C., Rohner F., N'Goran E., Nindjin C., Dostal Α., Utzinger J., Ghattas H., Lacroix С, Hurrell R.F. 2010. The effects og iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire. Am. J. Clin. Nutr. 92., 1406-1415.

9. Dostal Α., Chassard C., Hilty F.M., Zimmermann M.В., Jaeggi T., Rossi S., Lacroix С. 2012. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 142, 271-277.

10. Глущенко H.H., Богословская Ο.Α., Ольховская И.П., Лобаева T.А. 2002. Влияние наночастиц цинка на процессы ранозаживления. Материалы VI международной конференции "Биоантиоксидант". - Москва, - С. 114-11.

11. Sizova E., Miroshnikov S., Polyakova V., Glushchenko Ν., Skalny Α. 2013. Biological effects connected with metal nanoparticles entry into organism / //Ann BiolClin, vol. 71, № 5, septembre-octobre, 568-569.

12. Mohamad F. Aslam, David M. Frazer, NunoFaria, Sylvaine F. A. Bruggraber, Sarah J. Wilkins, Cornel Mirciov, Jonathan J. Powell, Greg J. Anderson, and Dora I. A. Pereira 2014. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice FASEB J. Aug; 28(8): 3671-3678.

13. Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JT, Ehrensperger F, Hurrell RF, Pratsinis SE, Langhans W, Zimmermann MB.. 2010. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.NatNanotechnol. May; 5(5):374-80. doi: 10.1038/nnano.2010.79. Epub 2010 Apr 25.

14. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H. 2014. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale. Dec 11; 7(2):625-36. doi: 10.1039/c4nr0506ld.

15. Cho WS, Kim S, Han BS, Son WC, Jeong J. 2009.Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett.; 191:96-102.

16. Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Fröhlich E. 2014. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell BiolToxicol. Feb; 30(1):1-16. doi: 10.1007/sl0565-013-9265-y. Epub 2013 Nov 29.

17. Жигач A.H., Лейпунский И.О., Кусков М.Л., Стоенко Н.И., Сторожев В.Б. 2000. Установка для получения и исследования физико-химических свойств наночастиц металлов. Приборы и техника эксперимента. №6. С.12.

18. Дерябин Д.Г., Алешина Е.С., Дерябина Т.Д., Ефремова Л.В. 2011. Биологическая активность ионов, нано- и микрочастиц Cu и Fe в тесте ингибирования бактериальной биолюминесценции // Вопросы биологической, медицинской и фармацевтической химий. №6. С. 31-36.

19. Фисинин В.И., Имангулов Ш.А., Егоров И.А., Околелова Т.М. и др. Рекомендации по кормлению сельскохозяйственной птицы. Сергиев Посад, 2000-67 с.

20. Сипайлова О.Ю., Лебедев C.B., Сизова Е.А. 2011. Влияние высокодисперсного порошка железа на морфофункциональное состояние селезенки (экспериментальное исследование). Вопросы биологической, медицинской и фармацевтической химии Т.9. №8. С. 43-46.).

21. Flynn N.E, Meininger C.J, Haynes T.E, Wu G. 2002.The metabolic basis of arginine nutrition and pharmacotherapy. BiomedPharmacother.; 56:427-438. doi: 10.1016/S0753-3322(02)00273-1.

22. Wu G, Ott Τ L, Knabe DA, Bazer FW. 2004.Amino acid composition of the fetal pig. J Nutr. 1999; 129:1031-1038.] [Wu G, Knabe DA, Kim SW. Arginine nutrition in neonatal pigs. J Nutr.; 134:2783S-2790S.

23. Fouad AM, El-Senousey HK, YangXJ, Yao JH. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal. Aug; 7(8): 1239-45. doi: 10.1017/S1751731113000347. Epub 2013 Mar 11.

24. Suchner U, Heyland DK, Peter K. 2002. Immune-modulatory actions of arginine in the critically ill. Br J Nutr.; 87:S121-S132. doi: 10.1079/BJN2001465.

Способ повышения продуктивности цыплят-бройлеров, отличающийся тем, что цыплятам-бройлерам в 14-дневном возрасте одноразово вводят инъекцию препарата наножелеза, который готовят путем смешивания наночастиц железа размером частиц 80,5±5,5 нм с физраствором в дозе: физраствора 200 мкл/гол, железа в дозировке 2 мг/кг живой массы.
СПОСОБ ОЦЕНКИ ВНУТРИМЫШЕЧНОЙ ИНЪЕКЦИИ НАНОДИСПЕРСНОГО ЖЕЛЕЗА НА ПРОДУКТИВНОСТЬ И МЕТАБОЛИЗМ ЦЫПЛЯТ-БРОЙЛЕРОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 57.
27.02.2014
№216.012.a754

Способ оценки адаптационных реакций крупного рогатого скота

Изобретение относится к животноводству, а именно к скотоводству, и может быть использовано для оценки адаптации организма. Способ оценки уровня адаптационных способностей крупного рогатого скота заключается в определении показателя оценки в группе здоровых животных путем вычисления отношения...
Тип: Изобретение
Номер охранного документа: 0002508551
Дата охранного документа: 27.02.2014
27.05.2014
№216.012.c906

Способ производства корма для рыб

Способ производства кормов для рыб предусматривает смешивание муки рыбной, муки мясокостной, шрота подсолнечного, шрота соевого, масла растительного, муки пшеничной и премикса ПМ-2 с наночастицами комплекса железо-кобальт. Процентное соотношение железа к кобальту в комплексе 70 к 30. Комплекс...
Тип: Изобретение
Номер охранного документа: 0002517228
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d716

Комплексный пробиотический препарат для крупного рогатого скота мясных пород

Изобретение относится к отрасли сельского хозяйства и может быть использовано для повышения продуктивности жвачных животных. Комплексный пробиотический препарат для крупного рогатого скота мясных пород включает иммобилизацию пробиотической культуры бактерий Bifidobacterium longum на цеолите....
Тип: Изобретение
Номер охранного документа: 0002520840
Дата охранного документа: 27.06.2014
20.10.2014
№216.012.ffb9

Способ приготовления кормовой добавки для сельскохозяйственных животных на основе пшеничных отрубей и микрочастиц железа

Изобретение относится к сельскому хозяйству, в частности к животноводству, и может быть использовано при получении корма для птицы. Способ получения кормовой добавки для сельскохозяйственной птицы включает обработку пшеничных отрубей электромагнитным сверхвысокочастотным излучением. Пшеничные...
Тип: Изобретение
Номер охранного документа: 0002531321
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ffbf

Способ повышения питательности пастбищного корма зоны сухих степей

Изобретение относится к области сельского хозяйства. Способ включает обогащение рациона скота микроэлементами для устранения дефицита в рационе непосредственно в пастбищном корме на корню по меди, цинку, марганцу, бору, азотной и углеводной подкормкам. Внекорневую обработку зеленой массы в...
Тип: Изобретение
Номер охранного документа: 0002531327
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.00ba

Способ определения годовой мясной продуктивности коров мясной породы шароле

Изобретение относится к области сельского хозяйства, а именно к технологии племенного и товарного мясного скотоводства. Способ представлен как сумма данных живой массы отъемных двух бычков и одной телочки, их массы при рождении и массы выбракованной коровы после откорма, приведенная из...
Тип: Изобретение
Номер охранного документа: 0002531578
Дата охранного документа: 20.10.2014
27.11.2014
№216.013.0b50

Способ содержания телят высокопродуктивных мясных пород на подсосе под коровами до 6-8-месячного возраста

Изобретение относится к сельскому хозяйству, в частности к способу содержания телят высокопродуктивных мясных пород на подсосе под коровами до 6-8 месячного возраста. Способ включает выращивание бычков до 6 месяцев и телочек до 8 месяцев. Телят содержат в помещении облегченного типа с...
Тип: Изобретение
Номер охранного документа: 0002534304
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.1dfb

Способ использования сывороточных белков в коровьем молоке в качестве стабилизатора при катодной электрохимической активации молока

Изобретение относится к области электрохимии, пищевой химии, и может найти применение в молочной промышленности и сельском хозяйстве. Способ применения альфа-лактоальбуминов и бета-лактоглобулинов, составляющих в среднем 0,57 мас.% в коровьем молоке в качестве стабилизаторов для сохранения в...
Тип: Изобретение
Номер охранного документа: 0002539103
Дата охранного документа: 10.01.2015
20.03.2015
№216.013.34ad

Способ выращивания зеленых гидропонных кормов

Изобретение относится к сельскому хозяйству, а именно к способу выращивания зеленых гидропонных кормов, включающему обработку посевного материала активированной водой - католитом. С целью длительной, не менее 7 суток, сохранности свойств активации катодного раствора pH 8-9 и Eh=-350…-400 мВ при...
Тип: Изобретение
Номер охранного документа: 0002544960
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3659

Способ оценки мясных коров по молочности

Изобретение относится к разведению и селекции крупного рогатого скота мясного направления продуктивности и может быть использовано в племенном и товарном мясном скотоводстве. Способ оценки мясных коров по молочности характеризуется оценочным показателем молочности, равным величине живой массы...
Тип: Изобретение
Номер охранного документа: 0002545397
Дата охранного документа: 27.03.2015
Показаны записи 11-20 из 90.
27.04.2016
№216.015.3822

Способ предпосевной обработки семян

Изобретение относится к сельскохозяйственному производству и может быть использовано для активации произрастания семян в системе выращивания кормовых культур методом аэропоники и гидропоники. Способ осуществляется обработкой семян стабилизированной электрически активированной водной суспензией...
Тип: Изобретение
Номер охранного документа: 0002582499
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.50e2

Устройство для выращивания вермикультуры технологически специализированного дождевого червя eisenia foetida и получения биогумуса

Изобретение относится к сельскому хозяйству. Устройство для выращивания вермикультуры технологически специализированного дождевого червя породы Eisenia foetida и получения биогумуса включает цилиндрический пластиковый контейнер, нижнюю часть контейнера для первоначального размещения червей в...
Тип: Изобретение
Номер охранного документа: 0002595738
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.827b

Способ эффективного повышения продуктивности цыплят-бройлеров при совместном применении внутримышечной инъекции наноформ железа и аргинина в составе рациона

Изобретение относится к сельскому хозяйству, в частности к способу эффективного повышения продуктивности цыплят-бройлеров при совместном применении внутримышечной инъекции наноформ железа и аргинина в составе рациона. Способ включает внутримышечные инъекции в 15- и 29-суточном возрасте лиозолей...
Тип: Изобретение
Номер охранного документа: 0002601812
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8546

Способ биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro

Изобретение относится к области лабораторной диагностики и касается способа биохемилюминесцентной оценки токсичности рубцовой жидкости in vitro. Представленный способ включает измерение интенсивности свечения бактерий штамма E. coli K12 TG1 с клонированными luxCDABE генами Photobacterium...
Тип: Изобретение
Номер охранного документа: 0002603104
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9bc4

Способ подготовки суспензии наночастиц металлов для наружного и внутреннего применения

Изобретение относится к химико-фармацевтической промышленности, ветеринарии, сельскому хозяйству и представляет собой способ получения суспензии наночастиц меди для наружного применения на водной основе, характеризующийся тем, что осуществляют ультразвуковое диспергирование наночастиц меди в...
Тип: Изобретение
Номер охранного документа: 0002610171
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a5c5

Способ отбора и подготовки проб шерсти крупного рогатого скота для исследования на элементный состав

Изобретение относится к сельскому хозяйству и может быть использовано при отборе проб биоматериала для получения достоверных данных по содержанию макро- и микроэлементов шерсти крупного рогатого скота. Способ отбора и подготовки проб шерсти включает настриг требуемого образца по массе не менее...
Тип: Изобретение
Номер охранного документа: 0002607751
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa10

Способ повышения содержания эссенциальных элементов в теле цыплят-бройлеров при однократной мышечной инъекции высокодисперсных наночастиц меди

Изобретение относится к сельскому хозяйству и может быть использовано в отрасли птицеводства. Способ повышения содержания эссенциальных элементов в теле цыплят-бройлеров включает в 14-дневном возрасте однократную внутримышечную инъекцию в бедро препарата наночастиц меди размером 40±0,5 мкм в...
Тип: Изобретение
Номер охранного документа: 0002611715
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaaa

Способ отбора образцов шерсти для исследования элементного статуса крупного рогатого скота в различные временные периоды

Изобретение относится к области сельского хозяйства, а именно к животноводству, ветеринарии и зоотехнике. Для исследования элементного статуса крупного рогатого скота в различные временные периоды проводят отбор образцов шерсти с верхней части холки животного с участка кожи площадью 5×5 см...
Тип: Изобретение
Номер охранного документа: 0002611755
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b6ab

Аэрогидропонный способ выращивания зеленых кормов

Изобретение относится к сельскому хозяйству, в частности к аэрогидропонному способу выращивания зеленых кормов. Увлажняют посевной материал и вегетативную массу католитом при активном непрерывном в течение 7-8 суток барботаже раствора воздухом. С целью сохранности свойств катодного раствора...
Тип: Изобретение
Номер охранного документа: 0002614778
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.c404

Способ подготовки корма к скармливанию для молодняка крупного рогатого скота

Изобретение относится к сельскому хозяйству, в частности к кормопроизводству, и может быть использовано при кормлении крупного рогатого скота. Способ подготовки корма для молодняка крупного рогатого скота к скармливанию предусматривает скармливание в составе рациона дробленого экструдированного...
Тип: Изобретение
Номер охранного документа: 0002617344
Дата охранного документа: 24.04.2017
+ добавить свой РИД