×
10.08.2016
216.015.5435

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЭНЕРГИИ НА ТВЕРДОМ ТОПЛИВЕ

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к области теплоэнергетики, а именно к устройствам получения тепловой и электрической энергии путем сжигания твердого углеродсодержащего топлива и может быть использовано для преобразования тепловой энергии в механическую или электрическую энергию, в стационарных и передвижных теплоэлектростанциях, а также в транспортных средствах. Установка для производства энергии на твердом топливе содержит блок помола твердого углеродсодержащего топлива, камеру сгорания с блоком инициализации горения в ней, средство подачи микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой в камеру сгорания и дымосос с трубой. Средство подачи микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой в камеру сгорания выполнено в виде дозатора, а последняя ступень блока помола твердого углеродсодержащего топлива выполнена в виде кавитационного диспергатора, выход которого соединен с входом накопителя микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой, а камера сгорания выполнена в виде капельной печи, вход подачи в нее капель микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой соединен через дозатор с выходом накопителя, а выход ее соединен с входом средства преобразования тепловой энергии капельной печи в электрическую и/или механическую энергию, выход которого соединен с дымососом. Техническим результатом предлагаемого изобретения является повышение надежности, эффективности работы за счет снижения износа деталей установки и снижения затрат на подготовку топлива. 1 з.п. ф-лы, 4 ил.

Предлагаемое изобретение относится к области теплоэнергетики, а именно к устройствам получения тепловой и электрической энергии путем сжигания твердого углеродсодержащего топлива, например, угля, шлаковых отвалов теплоэектростанций, работающих на угле, и т.п. Это изобретение может быть использовано в стационарных и передвижных теплоэлектростанциях малой энергетики, а также в транспортных средствах, однако широкое применение в теплоэнергетике и на транспорте оно найдет после перевода их на твердое топливо, например, уголь или шлаки, т.к. по себестоимости они вне конкуренции с другими видами топлива, включая нефть и газ.

Известно устройство для сжигания твердых органических отходов при повышенном давлении [патент РФ №2479792, 14.11.2011 г., 6F02G 5/04], включающее камеру сгорания, соединенную на входе с источником воздуха высокого давления и блоком подачи горючего и на выходе соединенную с камерой дожигания, которая снабжена устройством для подачи воздуха высокого давления, камеру дожигания, заканчивающуюся звуковым соплом, размещенным в эжекторе, при этом центральное тело сопла имеет устройство для подачи воды под давлением в дозвуковую часть сопла, а эжектор по потоку газа соединен с газовой турбиной, выходом сообщающейся с атмосферой, и газовая турбина механически соединена с турбокомпрессором, вход которого соединен с атмосферой, а выход соединен со входом камеры сгорания и устройством для подачи воздуха высокого давления в камеру дожигания.

Это устройство позволяет сжигать твердые органические отходы в виде колец из прессованных отсортированных твердых органических отходов, которые собирают в блок, имеющий высоту, равную высоте зоны сгорания. Однако это устройство не позволяет перерабатывать сыпучие твердые углеродсодержащие отходы, например, шлаковые отвалы теплоэлектростанций.

Известно устройство - комбинированная парогазовая установка с плазмотермической газификацией угля [патент РФ №2105040, 1998 г., 6 C10J 3/20]. Данная установка включает блок помола угля, плазмотермический газификатор, котел-утилизатор тепла, две паровые турбины с парогенераторами и газотурбинную установку с компрессором.

В известном устройстве уголь ультратонкого помола сначала газифицируют с помощью плазменных источников и только затем уже после многоступенчатой очистки в виде синтез-газа впрыскивают в камеру сгорания газовой турбины. Указанные операции осуществляют последовательно друг за другом с помощью специальных агрегатов, что в конечном результате усложняет схему выработки электроэнергии и делает конструкцию весьма громоздкой и малоэффективной для нужд малой энергетики, в том числе и для транспорта. К тому же переработка угля сначала в синтез-газ, а затем в тепловую и электрическую энергию термодинамически неоправданна в силу необратимых потерь, в то время как при прямом сжигании мелкодисперсного угля в камере сгорания газовой турбины данные проблемы решаются гораздо проще.

Наиболее близким по совокупности признаков к заявляемому является устройство для сжигания угля [патент РФ №2327889, 27.09.2006 г., 6F02G 5/04]. Оно содержит блок для ультратонкого помола угля, газовую турбину с камерой сгорания, котел-утилизатор тепла и дымосос с трубой. Последняя ступень устройства ультратонкого помола угля, выполненная в виде тороидальной вихревой камеры с тангенциальными каналами для входа пылеугольной смеси, расположена в непосредственной близости от камеры сгорания и соединена с последней при помощи эжектора, а котел-утилизатор тепла расположен на выходе газовой турбины перед дымососом и внутри него установлен парогенератор. На камере сгорания газовой турбины установлен, как минимум, один плазменный источник на парах воды, гидравлически соединенный с парогенератором.

В данном устройстве уголь ультратонкого помола вводят в камеру сгорания и инициируют процесс сгорания его. При этом тонину ультратонкого помола угля доводят до размера не более 10 мкм и сепарируют, а затем впрыскивают при помощи эжектора в камеру сгорания газовой турбины. Вышеуказанный размер помола и выделение мелкой фракции угля осуществляют с помощью центробежного поля внутри тороидальной вихревой камеры, которую располагают непосредственно перед камерой сгорания газовой турбины. Инициирование процесса сгорания пылеугольной смеси в камере сгорания газовой турбины осуществляют с помощью плазменного источника на парах воды, генерируемых за счет использования энтальпии выходящих газов.

При этом в данном устройстве эжектор выполняет функции средства подачи пылеугольной смеси (тонины помола угля) в камеру сгорания, а плазменный источник на парах воды, гидравлически соединенный с парогенератором, - функции блока инициализации горения в ней.

Однако практический опыт авторов изобретения показал, что при помоле частиц угля до 10 мкм и при использовании способа впрыска воздухом (газовый эжектор) происходит обгорание сопла эжекторов. Каналы эжекторов подвержены воздействию абразивных частиц угля и быстро изнашиваются, т.к. подача частиц в топку осуществляется воздухом. Содержащиеся абразивные частицы в угле будут истирать стенки тороидальной вихревой камеры. Это значительно снижает надежность работы установки в целом, межремонтную наработку ее и себестоимость вырабатываемой энергии.

Кроме того, наличие в прототипе высокоэнергетических плазменных источников увеличивает металлоемкость конструкции устройства, также идут дополнительные энергозатраты на поддержание процессов плазменного горения.

Техническим результатом предлагаемого изобретения является повышение надежности и эффективности работы установки за счет снижения износа деталей ее.

Заявленный результат достигается тем, что в известной установке для производства энергии на твердом топливе, включающей блок помола твердого углеродсодержащего топлива, камеру сгорания с блоком инициализации горения в ней, средство подачи микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой в камеру сгорания и дымосос с трубой, доплнительно средство подачи микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой в камеру сгорания выполнено в виде дозатора, а последняя ступень блока помола твердого углеродсодержащего топлива выполнена в виде кавитационного диспергатора, выход которого соединен с входом накопителя микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой, а камера сгорания выполнена в виде капельной печи, вход подачи в нее капель микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой соединен через дозатор с выходом накопителя, а выход ее соединен с входом средства преобразования тепловой энергии капельной печи в электрическую и/или механическую энергию, выход которого соединен с дымососом.

При этом средство преобразования тепловой энергии капельной печи в электрическую энергию выполнено в виде двигателя с внешним подводом тепла, вход горячей камеры которого соединен с выходом капельной печи, выход горячей камеры с дымососом, а привод двигателя - с электрогенератором, питающим блок помола и нагрузку потребителя электрической энергии.

Выполнение средства подачи микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой в камеру сгорания в виде дозатора, а последней ступени блока помола твердого углеродсодержащего топлива в виде кавитационного диспергатора, выход которого соединен с входом накопителя микро-нанокомпозитной

смеси помола твердого углеродсодержащего топлива с водой, позволяет снизить износ деталей блока помола и таким образом увеличить ресурс работы установки.

Сущность изобретения поясняется фигурами 1-4.

На фиг. 1 приведена общая блок схема установки.

На фиг. 2 приведен вариант исполнения кавитационного диспергатора, являющегося последней ступенью блока помола.

На фиг. 3 приведен вариант исполнения капельной печи и блока инициализации горения в ней, а также соединений между ними.

На фиг. 4 приведен вариант исполнения дозатора и накопителя готовой микро-нанокомпозитной смеси помола твердых углеродсодержащих топлива и/или отходов с водой, а также соединений между ними.

Установка содержит бункер 1 подачи твердого углеродсодержащего топлива в блок 2 помола, накопитель 3 микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой, дозатор 4, камеру сгорания, выполненную в виде капельной печи 5, двигатель 6 с внешним подводом тепла, имеющий механический привод к электрогенератору 6, дымосос 7 и дымовую трубу 8.

Блок помола 2 содержит шредер 9, выполняющий функции измельчителя грубого помола (не менее 1 мм) кусков твердого углеродсодержащего топлива, например, каменного угля, шлаковых отходов теплоэлектростанций и т.п., накопитель 10 и резервуар 11 с водой, из которого она подается в накопитель 10 для смешивания в нем с помолом из шредера 9, а также кавитационный диспергатор 12, например, в виде проточного ультразвукового кавитационного реактора. В блоке помола 2 сборка шредер 9, накопитель 10 и резервуар 11 выполняет функции первой ступени помола, а кавитационный диспергатор 12 функции второй - последней ступени блока 2 помола.

При этом выход 13 шредера 9 соединен с первым входом 14 накопителя 10, второй вход 15 которого соединен с выходом 16 резервуара 11 с водой, а выход 17 соединен с входом 18 кавитационного диспергатора 12.

Кавитационный диспергатор 12 (см. фиг. 2.) содержит цилиндрическую рабочую камеру 19 в технологическом объеме 20, выполненном в виде сферы, а также входной 21 и выходной 22 сквозные каналы, впрессованные в цилиндрическую камеру 19 технологического объема 20 с соосным расположением их относительно друг друга и оси камеры 19. Цилиндрическая рабочая камера 19 выполняет функции резонатора, а технологический объем 20 функции волновода ультразвуковых колебаний от ультразвуковых преобразователей УЗП. Поверхность сферы технологического объема 20 (волновода) выполнена в виде объемного многогранника, а нормали к его граням ориентированы в центр сферы реактора (в центр цилиндрической рабочей камеры 19). Ультразвуковые преобразователи УЗП закреплены на гранях технологического объема 20 (волновода) и равноудалены от центра сферы (центра цилиндрической рабочей камеры 19). Кавитационный диспергатор 12 содержит также насос 23, вход 24 которого через входной канал 18 соединен с выходом 17 накопителя 10, а выход 25 - с входным сквозным каналом 21 технологического объема 20. Выходной сквозной канал 22 технологического объема 20 через краны 26, 27 соединен соответственно с выходами 28, 29 кавитационного диспергатора 12.

При этом выход 29 соединен с входом 30 накопителя 10, а выход 28 соединен с входом 31 накопителя 3 готовой к употреблению микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой.

Краны 26, 27 имеют соответственно входы 32, 33 управления ими, позволяющие управлять направлением подачи микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой из выходного канала 22. Переключение кранов 26, 27 позволяет направлять микро-нанокомпозитную смесь помола твердого углеродсодержащего топлива с водой либо на повторный помол с целью дальнейшего уменьшения размера частиц помола (при открытом кране 27 и закрытом кране 26), либо направлять ее в накопитель 3, если она готова к употреблению (при закрытом кране 27 и открытом кране 26).

Данный кавитационный диспергатор позволяет получать частицы помола в интервале от 40 нм до 0.7 мкм при высокой производительности обработки технологических сред в режиме непрерывного потока.

Накопитель 3 готовой к употреблению микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой выполнен в виде, например, стального бака объемом не менее 1000 литров.

Выход 34 накопителя 3 соединен с входом 35 дозатора 4 (см. фиг. 1, 3), который содержит нагнетающий насос 36, мерную трубку 37, входной патрубок 38, выходной патрубок 39, обратный патрубок 40, регулировочный стержень 41, установленный в заглушке 42 с возможностью вращения и перемещения вдоль оси мерной трубки 37. В дозаторе 4 имеется также воронка 43 для сбора капель и гидравлический затвор 45.

Капельная печь 5 (см. фиг. 1, 4) содержит горелку 46 и водогрейный котел 47. Горелка 46 содержит трубу 48, к которой приварено днище 49. На нем на стойках 50, 51 установлен испарительный диск 52, к которому по его периметру приварено кольцо 53. В пространство, образованное испарительным диском 52 и кольцом 53, подают топливо виде капель 55, которые на раскаленном диске 52 воспламеняются. В днище 50 встроена газовая горелка 56, которая через клапан 57 блока 58 инициализации горения подсоединена к газовому баллону 59. Рядом с газовой горелкой 56 в днище 49 на изоляторе 60 установлен поджигающий электрод 61. Поджог газа газовой горелки 56 производится с помощью электрического разряда, создаваемого между газовой горелкой 56 и поджигающим электродом 61 источником высокого напряжения 62 блока 58 инициализации горения.

Труба 48 горелки 46 помещена в кожух 63, в верхней части которого по периметру его расположен набор сквозных отверстий 64, необходимых для организации поддува воздуха в область испарительного диска 52 через набор сквозных отверстий 65, расположенных в нижней части трубы 48, рядом с испарительным диском 52. Трубка 66 для подачи капель 55 топлива (микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой) на испарительный диск 52 закреплена на кожухе 63 с помощью колец 67, 68, трубок 69, 70 и вставок 71, 72, сборка которых выполняет функции двухконтурного охладителя трубки 66. Последняя соединена с выходом 73.

Водогрейный котел 47 установлен на горелке 46 и содержит трубу 74 с газоходом 75, выход 76 которого соединен с горячей камерой 77 двигателя 5 (см. фиг. 1, 3), холодная камера 78 которого соединена с холодильником (на фиг. 1 не показан). Труба 74 имеет рубашку 79, заполненную теплоносителем 80, например, водой. В рубашке 79 установлен входной 81 и выходной 82 штуцера для подачи воды в водогрейный котел 47 через штуцер 81 и отбора нагретой воды из водогрейного котла 47 через штуцер 82. В бункере 1 находится твердое углеродсодержащее топливо 83, например, шлаковые отходы теплоэлектростанций или куски каменного угля. В дозаторе 4 имеется капельница 84 с регулятором скорости капания капель 44 в воронку 43 для сбора капель и подачи их через колено 45 гидравлического затвора на выход 73 дозатора 4.

Установка работает следующим образом.

Перед началом работы устройства в бункер 1 загружают твердое углеродсодержащее топливо 83, например, каменный уголь, резервуар 11 заполняют водой, а на входы 32 и 33 кранов 26 и 27 (см. фиг. 2) соответственно подают сигнал закрытия их и таким образом закрывают их.

Далее в горелке 46 капельной печи 5 с помощью газовой горелки 56 разогревают докрасна (около 800-1100°C) испарительный диск 52. Для этого открывают клапан 57 блока 58 инициализации горения и подают в горелку 56 природный газ, а затем поджигают его с помощью электрического разряда, создаваемого источником высокого напряжения 62 между газовой горелкой 56 и поджигающим электродом 61.

Затем твердое углеродсодержащее топливо 83, например, каменный уголь, из бункера 1 направляют в шредер 9, в котором он перемалывается до размера частиц не более 1.5 мм. С выхода 13 шредера 9 помол каменного угля через вход 14 передается в накопитель 10, в котором он смешивается с водой, поступающей через вход 15 в накопитель 10 с выхода 16 резервуара 11, в пропорции 60% объемных воды и 40% объемных помола каменного угля.

Далее на вход 33 крана 27 подают сигнал открытия и таким образом открывают его. Смесь воды и помола с выхода 16 накопителя 10 через вход 18 диспергатора 12 поступает на вход 24 насоса 23 (см. фиг. 2). Насос 23 через входной канал 21 подает смесь помола с водой в рабочую камеру 19 технологического объема 20 диспергатора 12. При выходе из канала 21 в расширяющийся объем рабочей камеры 19 технологического объема 20 вода смеси кавитирует с образованием газовых пузырьков в рабочей камере 19. При подаче напряжения на пьезоэлектрические элементы ультразвуковых преобразователей УЗП электрические колебания преобразуются в ультразвуковые колебания. На резонансной частоте колебаний осуществляется передача энергии колебаний с наибольшей интенсивностью по нормали к стенкам рабочей камеры 19. Под воздействием ультразвуковых колебаний кавитационные пузырьки с силой схлопываются. Энергия схлопывания разрушает частицы грубого помола, находящиеся с непосредственной близости от пузырька, а смесь помола с водой, подаваемая с небольшим напором насосом 23 в рабочую камеру 19, подвергается гомогенизации и уменьшению размера частиц помола до величины не более 1 мкм. В выходном канале 22 путем отбора проб (отбор проб на фиг. 2 не показан) осуществляют контроль размера частиц помола.

Если размер частиц помола не достиг величины меньше 1 мкм, то смесь воды и помола через открытый кран 27 с выхода 29 направляют на вход 30 накопителя 10. Таким образом смесь помола с водой возвращается в накопитель 10, а из него насосом 23 диспергатора 12 закачивается в рабочую камеру 19 технологического объема 20, где частицы помола снова подвергаются разрушению за счет энергии схлопывания газовых пузырьков в рабочей камере 19, и затем через кран 27 снова подаются в накопитель 10 и т.д. Если размер частиц помола достиг величины меньше 1 мкм, то на вход 33 крана 27 подают сигнал закрытия и таким образом закрывают его, а на вход 32 крана 26 подают сигнал открытия и таким образом открывают его. При этом смесь помола с водой с выхода 28 диспергатора 12 через вход 31 поступает в накопитель 3 готовой к употреблению микро-нанокомпозитной смеси помола твердого углеродсодержащего топлива с водой.

С выхода 34 накопителя 3 микро-нанокомпозитная смесь помола твердое углеродсодержащее топливо с водой поступает на вход 35 дозатора 4 (см. фиг. 1, 3). При этом нагнетающий насос 36 закачивает микро-нанокомпозитную смесь помола с водой из накопителя 3 в мерную трубку 37 через входной патрубок 38. В мерной трубке 37 поток микро-нанокомпозитной смеси помола с водой разделяется на два: основной поток Ф1 и обратный поток Ф2. Перемещение регулировочного стержня 41, например, путем ввинчивания или вывинчивания его, позволяет регулировать зазор h между торцом стержня 41 и торцом выходного патрубка 39, и таким образом количество текучей смеси помола, проходящей в выходной патрубок 39 и далее в капельницу 84. Регулятором 85 устанавливают необходимую скорость подачи капель на выход 73 дозатора 4 через воронку 43 и колено 45 гидравлического затвора.

Капли 44 с выхода 73 дозатора 4 поступают в трубку 66 капельной печи 5. Из трубки 66 они в виде капель 55 топлива (микро-нанокомпозитной смеси помола твердое углеродсодержащее топливо с водой) падают на испарительный диск 52 горелки 46 капельной печи 5.

В процессе сжигания топлива капли 55 при температуре диска 52 вода (капли) испаряется, превращаясь при этом в перегретый пар. В присутствии углерода, а именно микро-наночастиц твердого углеродсодержащего топлива - каменного угля, термически образуется смесь водорода Н2 с оксидом углерода СО по реакции, т.е. синтез-газ. Этот газ при температуре в горелке 46 и внутри трубы 74 водогрейного котла 47 около 500-800°C сгорает с выделением тепла. Поддув воздуха в область испарительного диска 52 через набор сквозных отверстий 65, расположенных в нижней части трубы 48, рядом с испарительным диском 52 позволяет интенсифицировать процесс горения.

Далее высокоэнтальпийный поток газа с выхода 76 капельной печи 5 направляется на горячую камеру 77 двигателя 6 с внешним подводом тепла. В камере 77 поток газа, проходя через теплообменники двигателя 6 (на фиг. 1 теплообменники не показаны), энтальпия газового потока понижается (газ отдает тепло двигателю 6), и он, уже охлажденный, поступает в дымосос 7 и далее в дымовую трубу 8, из которой он выбрасывается уже в атмосферу. Электрогенератор ЭГ двигателя 6 при этом вырабатывает электроэнергию, которая передается потребителю.

Следует отметить, что многие узлы, присущие обычной капельной печи 5 и двигателю 6 с внешним подводом тепла (например, двигателю Стерлинга), на фигурах показаны условно или не показаны и не описаны вообще, т.к. они не влияют на сущность заявляемого решения и могут быть выполнены традиционно.

Преимущество заявляемого изобретения состоит в том, что использование микро-нанокомпозитной смеси помола с водой существенно снижает все виды затрат, включая эксплуатационные, обеспечивая при этом высокую эффективность в сочетании с низкой себестоимостью.


УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЭНЕРГИИ НА ТВЕРДОМ ТОПЛИВЕ
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЭНЕРГИИ НА ТВЕРДОМ ТОПЛИВЕ
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЭНЕРГИИ НА ТВЕРДОМ ТОПЛИВЕ
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЭНЕРГИИ НА ТВЕРДОМ ТОПЛИВЕ
УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА ЭНЕРГИИ НА ТВЕРДОМ ТОПЛИВЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 39.
10.03.2014
№216.012.a9a4

Способ получения низкозастывающих зимних сортов топлив депарафинизацией

Изобретение относится к депарафинизации нефтепродуктов. Изобретение касается способа получения низкозастывающих зимних сортов топлив депарафинизацией нефтепродуктов путем смешения сырья с поверхностно-активным веществом, охлаждения до температуры депарафинизации с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002509143
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad7f

Электроискровой генератор энергии

Изобретение относится к энергетическим установкам, предназначенным для получения электрической энергии из газового электрического разряда. Техническим результатом является повышение стабильности, надежности и эффективности преобразования энергии при работе, который достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002510130
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad80

Импульсный электроискровой генератор энергии

Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства. Достигаемый технический результат - снижение затрат энергии от внешнего первичного источника электрической энергии. Импульсный электроискровой генератор энергии...
Тип: Изобретение
Номер охранного документа: 0002510131
Дата охранного документа: 20.03.2014
20.06.2014
№216.012.d268

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, электроды, размещенные в рабочих камерах, выполненных в форме усеченного конуса, большое основание которого сопряжено...
Тип: Изобретение
Номер охранного документа: 0002519635
Дата охранного документа: 20.06.2014
10.08.2014
№216.012.e773

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, набор размещенных в полости корпуса на диске рабочих камер с электродами, выполненных в форме усеченных конусов....
Тип: Изобретение
Номер охранного документа: 0002525044
Дата охранного документа: 10.08.2014
27.11.2014
№216.013.0abb

Трансзвуковой водометный движитель судна

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. Трансзвуковой водометный движитель судна содержит входной и выходной водовод, ускоритель потока текучей среды. Входной водовод, выход которого соединен с входом ускорителя потока текучей среды,...
Тип: Изобретение
Номер охранного документа: 0002534155
Дата охранного документа: 27.11.2014
27.02.2015
№216.013.2c93

Ключевой усилитель мощности

Изобретение относится к области электрорадиотехники, а именно к ключевым усилителям высокой частоты, и может быть использовано в радиопередатчиках. Технический результат изобретения заключается в улучшении линейности усиления ключевых усилителей мощности за счет существенного снижения уровня...
Тип: Изобретение
Номер охранного документа: 0002542879
Дата охранного документа: 27.02.2015
10.05.2015
№216.013.4b32

Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи. Техническим результатом является повышение помехоустойчивости обнаружителя шумовых гидроакустических...
Тип: Изобретение
Номер охранного документа: 0002550757
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b33

Гидроакустический способ контроля скорости потока жидких сред в трубопроводах

Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее...
Тип: Изобретение
Номер охранного документа: 0002550758
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c94

Импульсный источник напряжения

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных...
Тип: Изобретение
Номер охранного документа: 0002551118
Дата охранного документа: 20.05.2015
Показаны записи 1-10 из 54.
10.03.2014
№216.012.a9a4

Способ получения низкозастывающих зимних сортов топлив депарафинизацией

Изобретение относится к депарафинизации нефтепродуктов. Изобретение касается способа получения низкозастывающих зимних сортов топлив депарафинизацией нефтепродуктов путем смешения сырья с поверхностно-активным веществом, охлаждения до температуры депарафинизации с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002509143
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad7f

Электроискровой генератор энергии

Изобретение относится к энергетическим установкам, предназначенным для получения электрической энергии из газового электрического разряда. Техническим результатом является повышение стабильности, надежности и эффективности преобразования энергии при работе, который достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002510130
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad80

Импульсный электроискровой генератор энергии

Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства. Достигаемый технический результат - снижение затрат энергии от внешнего первичного источника электрической энергии. Импульсный электроискровой генератор энергии...
Тип: Изобретение
Номер охранного документа: 0002510131
Дата охранного документа: 20.03.2014
20.06.2014
№216.012.d268

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, электроды, размещенные в рабочих камерах, выполненных в форме усеченного конуса, большое основание которого сопряжено...
Тип: Изобретение
Номер охранного документа: 0002519635
Дата охранного документа: 20.06.2014
10.08.2014
№216.012.e773

Роторный электрогидравлический двигатель

Изобретение относится к машиностроению, в частности к двигателям, работающим на основе электрогидравлического эффекта. Роторный электрогидравлический двигатель содержит корпус, набор размещенных в полости корпуса на диске рабочих камер с электродами, выполненных в форме усеченных конусов....
Тип: Изобретение
Номер охранного документа: 0002525044
Дата охранного документа: 10.08.2014
27.11.2014
№216.013.0abb

Трансзвуковой водометный движитель судна

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. Трансзвуковой водометный движитель судна содержит входной и выходной водовод, ускоритель потока текучей среды. Входной водовод, выход которого соединен с входом ускорителя потока текучей среды,...
Тип: Изобретение
Номер охранного документа: 0002534155
Дата охранного документа: 27.11.2014
27.02.2015
№216.013.2c93

Ключевой усилитель мощности

Изобретение относится к области электрорадиотехники, а именно к ключевым усилителям высокой частоты, и может быть использовано в радиопередатчиках. Технический результат изобретения заключается в улучшении линейности усиления ключевых усилителей мощности за счет существенного снижения уровня...
Тип: Изобретение
Номер охранного документа: 0002542879
Дата охранного документа: 27.02.2015
10.05.2015
№216.013.4b32

Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи. Техническим результатом является повышение помехоустойчивости обнаружителя шумовых гидроакустических...
Тип: Изобретение
Номер охранного документа: 0002550757
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b33

Гидроакустический способ контроля скорости потока жидких сред в трубопроводах

Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее...
Тип: Изобретение
Номер охранного документа: 0002550758
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c94

Импульсный источник напряжения

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных...
Тип: Изобретение
Номер охранного документа: 0002551118
Дата охранного документа: 20.05.2015
+ добавить свой РИД