×
10.08.2016
216.015.5365

Результат интеллектуальной деятельности: СПОСОБ ПОДАЧИ РЕАГЕНТА И ОБРАБОТКИ СКВАЖИНЫ С ВЫСОКОВЯЗКОЙ НЕФТЬЮ

Вид РИД

Изобретение

№ охранного документа
0002593850
Дата охранного документа
10.08.2016
Аннотация: Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации и предотвращения образования асфальтено-смолопарафиновых отложений (АСПО) в нефтегазодобывающих скважинах. Способ включает спуск в скважину колонны насосно-компрессорных труб - НКТ с винтовым насосом с приводом от колонны насосных штанг насосом, кабеля питания электродвигателя насоса и капиллярной трубки, одновременный отбор нефти и подачу химического реагента - деэмульгатора дозировочным насосом с устья скважины по капиллярной трубке на прием насоса. Запускают в работу привод винтового насоса с частотой вращения колонны штанг 100 об/мин. Подачу реагента производят по капиллярной трубке в колонну НКТ на расстоянии 0,2 м от ее нижнего конца. В процессе отбора высоковязкой нефти периодически определяют нагрузку на привод винтового насоса по току. При росте нагрузки до 40 А снижают частоту вращения колонны штанг до 60 об/мин, после чего прекращают подачу деэмульгатора по капиллярной трубке в колонну НКТ. В межколонное пространство скважины на геофизическом кабеле спускают наконечник и производят импульсную высокочастотную термоакустическую (ИВЧТА) обработку скважины, не прерывая отбора высоковязкой нефти из скважины. В процессе проведения ИВЧТА обработки скважины производят периодическое определение нагрузки по току на привод винтового насоса через каждые 12 ч до достижения значения по току 15 А, затем восстанавливают частоту вращения колонны штанг до 100 об/мин, после чего ИВЧТА обработку скважины прекращают, извлекают из межколонного пространства скважины наконечник с геофизическим кабелем и возобновляют подачу деэмульгатора по капиллярной трубке, продолжают одновременный отбор высоковязкой нефти и подачу деэмульгатора дозировочным насосом по капиллярной трубке. Повышается эффективность обработки скважины, надежность, увеличивается отбор нефти, исключаются ремонтные работы. 1 ил., 1 табл.
Основные результаты: Способ подачи реагента и обработки скважины с высоковязкой нефтью, включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) с насосом, кабеля питания электродвигателя насоса и капиллярной трубки, одновременный отбор нефти и подачу химического реагента дозировочным насосом с устья скважины по капиллярной трубке на прием насоса, отличающийся тем, что в качестве насоса используют винтовой насос с приводом от колонны насосных штанг, а в качестве химического реагента, дозируемого по капиллярной трубке, используют деэмульгатор, запускают в работу привод винтового насоса с частотой вращения колонны штанг 100 об/мин, подачу химического реагента производят дозировочным насосом по капиллярной трубке в колонну НКТ на расстоянии 0,2 м от ее нижнего конца, при этом в процессе отбора высоковязкой нефти периодически определяют нагрузку на привод винтового насоса по току, так при росте нагрузки до 40 А снижают частоту вращения колонны штанг до 60 об/мин, после чего прекращают подачу деэмульгатора по капиллярной трубке в колонну НКТ, в межколонное пространство скважины на геофизическом кабеле спускают наконечник и производят импульсную высокочастотную термоакустическую (ИВЧТА) обработку скважины, не прерывая отбора высоковязкой нефти из скважины, в процессе проведения ИВЧТА обработки скважины производят периодическое определение нагрузки по току на привод винтового насоса через каждые 12 ч до достижения значения по току 15 А, затем восстанавливают частоту вращения колонны штанг до 100 об/мин, после чего ИВЧТА обработку скважины прекращают, извлекают из межколонного пространства скважины наконечник с геофизическим кабелем и возобновляют подачу деэмульгатора по капиллярной трубке, продолжают одновременный отбор высоковязкой нефти и подачу деэмульгатора дозировочным насосом по капиллярной трубке.

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации и предотвращения образования асфальтено-смолопарафиновых отложений (АСПО) в нефтегазодобывающих скважинах.

Известен способ обработки скважины (патент RU №2475627, МПК Е21В 37/00, опубл. 20.02.2013 г., бюл. №5), состоящий в том, что в насосно-компрессорную трубу (НКТ) скважины на длину от устья до призабойной зоны или на глубину возможного формирования АСПО спускают кабель питания (КП) с тросом или без с количеством проводников в нем от 1 до 20, на котором крепят N блоков разрядных (БРn) с количеством от 1 до 1000 штук на расстоянии Ln (n-1) от 1 м до 5000 м друг от друга, и каждым n-м БРn обрабатывают свой n-й участок НКТ длиной (ΔLn) от 1 м до 1000 м, на каждый БРn по КП подают от блока управления (БУ), который располагают на поверхности, постоянное или переменное напряжение питания от 10 до 1000 В, и формируют БРn импульсы или пакеты импульсов напряжения с амплитудой от 10 В до 50 кВ, длительностью от 1 нс до 100 мс, с фронтом от 0,1 нс до 1 мс, спадом от 1 нс до 1 мс, частотой следования от 0,001 Гц до 1 МГц, скважностью импульсов от 10-5 до 109 которые по кабелям разряда (КР) с количеством проводников в нем от 1 до 20, от каждого БРn поступают на разрядники количеством от 1 до 100 в группе (Рm) с числом электродов от 2 до 10 и общим количеством 1 до 1000, которые крепят на КП на расстоянии (Δsm(m-1)) от 1 м до 1000 м друг от друга, в результате чего производят разряд на любом из разрядников независимо от других разрядников или на любой выбираемой из их общего количества группе разрядников и локальный нагрев в месте разряда, для контроля процессов получают сигналы от акустических датчиков числом от 1 до 100, датчиков температуры числом от 1 до 100 и датчиков давления числом от 1 до 100, которые устанавливают внутри НКТ и в межтрубном пространстве, инициируют тем самым электрогидродинамические ударные волны и в комплексе указанных воздействий на все разрядники повышают температуру в НКТ выше температуры плавления АСПО, производят при этом очистку НКТ ударными волнами, разрушают твердые фракции нефтяной жидкости в продукте, снижают вязкость продукта, предотвращают выпадение АСПО и ликвидируют выпавшие АСПО.

Недостатками данного способа являются:

- во-первых, технологически сложный процесс реализации, связанный с большим количеством разрядников от 1 до 100 в группе (Рm) с числом электродов от 2 до 10 и общим количеством 1 до 1000;

- во-вторых, низкая эффективность реализации способа при отборе высоковязкой нефти, так как способ реализуют только после зависания привода скважинного насоса или в процессе подземного ремонта. Поэтому в обоих случаях происходят остановка работы скважинного насоса и простой скважины;

- в-третьих, способ применяется как временная мера для предотвращения выпадения АСПО и ликвидации выпавших АСПО из скважины и НКТ, после прекращения реализации способа возобновляется выпадение АСПО в скважине и НКТ, а также образование водонефтяной эмульсии в НКТ.

Наиболее близким по технической сущности является способ подачи реагента в скважину (патент RU №2302513, МПК Е21В 37/06, Е21В 41/02, опубл. 10.07.2007, Бюл. №19), включающий периодическую регулируемую подачу реагента в межтрубное пространство скважины дозировочным насосом, при подземном ремонте осложненной скважины кабель питания электродвигателя насоса меняют на кабель с капиллярной трубкой, который спускают на колонне НКТ в скважину и осуществляют одновременный отбор нефти насосом и подачу химического реагента по капиллярной трубке, при этом подачу химического реагента осуществляют либо на прием скважинного насоса, либо в интервал перфорации скважины, для чего на конец капиллярной трубки кабеля присоединяют полиэтиленовую капиллярную трубку расчетной длины с помощью соединительного ниппеля с грузом-форсункой.

Недостатками данного способа являются:

- во-первых, низкая эффективность подачи реагента на прием насоса и в интервал перфорации, так как в процессе отбора высоковязкой нефти электроцентробежным насосом из карбонатных пород на приеме насоса и в колонне труб откладываются как АСПО, так и водонефтяная эмульсия, вследствие высокой обводненности (от 40 до 80%) отбираемой продукции из карбонатных пород, при этом химический реагент, подаваемый по капиллярной трубке на прием насоса или в интервал перфорации пласта, не способен разрушить уже образовавшуюся АСПО и водонефтяную эмульсию, поэтому в процессе работы происходит увеличение нагрузки на насос, а это увеличение энергетических затрат на единицу (м3) отбираемой нефти;

- во-вторых, низкая надежность, увеличение нагрузки на насос вследствие отложения АСПО и/или водонефтяной эмульсии на приеме насоса и в колонне труб, что приводит к отказу его в работе;

- в-третьих, отказ насоса в работе требует проведения подземного ремонта скважины (ПРС), а это дополнительные затраты на ПРС;

- в-четвертых, в процессе проведения ПРС отбор нефти не производится, что снижает объем добычи нефти из скважины.

Техническими задачами изобретения являются повышение эффективности и надежности реализации способа подачи реагента и обработки скважины с высоковязкой нефтью, а также исключение привлечения бригады ПРС для восстановления отбора нефти из скважины и сохранение объемов отбора высоковязкой нефти из скважины.

Поставленная задача решается способом подачи реагента и обработки скважины с высоковязкой нефтью, включающим спуск в скважину колонны насосно-компрессорных труб - НКТ с насосом, кабеля питания электродвигателя насоса и капиллярной трубки, одновременный отбор нефти и подачу химического реагента дозировочным насосом с устья скважины по капиллярной трубке.

Новым является то, что в качестве насоса используют винтовой насос с приводом от колонны насосных штанг, а в качестве химического реагента, дозируемого по капиллярной трубке, используют деэмульгатор, запускают в работу привод винтового насоса с частотой вращения колонны штанг 100 об/мин, подачу химического реагента производят дозировочным насосом по капиллярной трубке в колонну НКТ на расстоянии 0,2 м от ее нижнего конца, при этом в процессе отбора высоковязкой нефти периодически определяют нагрузку на привод винтового насоса по току, так при росте нагрузки до 40 А снижают частоту вращения колонны штанг до 60 об/мин, после чего прекращают подачу деэмульгатора по капиллярной трубке в колонну НКТ, в межколонное пространство скважины на геофизическом кабеле спускают наконечник и производят импульсную высокочастотную термоакустическую (ИВЧТА) обработку скважины, не прерывая отбора высоковязкой нефти из скважины, в процессе проведения ИВЧТА обработки скважины производят периодическое определение нагрузки по току на привод винтового насоса через каждые 12 ч до достижения значения по току 15 А, затем восстанавливают частоту вращения колонны штанг до 100 об/мин, после чего ИВЧТА обработку скважины прекращают, извлекают из межколонного пространства скважины наконечник с геофизическим кабелем и возобновляют подачу деэмульгатора по капиллярной трубке, продолжают одновременный отбор высоковязкой нефти и подачу деэмульгатора дозировочным насосом по капиллярной трубке.

На чертеже схематично изображен предлагаемый способ подачи реагента и обработки скважины с высоковязкой нефтью.

Предлагаемый способ реализуется следующим образом.

Способ подачи реагента и обработки скважины с высоковязкой нефтью включает спуск в скважину 1 колонны НКТ 2 с винтовым насосом 3, кабеля питания электродвигателя (не показан) винтового насоса 3 и капиллярной трубки 4.

На устье скважины устанавливают емкость 5 и дозировочный насос 6. Емкость 5 обвязывают с дозировочным насосом 6, после чего заправляют емкость 5 химическим реагентом (деэмульгатором). Применяют любой известный деэмульгатор.

Деэмульгатор предназначен для разрушения высоковязких водонефтяных эмульсий с высоким содержанием смол и парафинов, обеспечивает высокую скорость отделения воды при температурах 18-20°С и значительную глубину обезвоживания нефти при температурах 35-40°С, обладает свойствами ингибитора парафиноотложений.

В скважине 1 производят посадку трубного якоря 7 винтового насоса 3, а затем монтируют привод винтового насоса 3 в виде колонны насосных штанг 8.

Запускают в работу привод винтового насоса 3 с частотой вращения колонны насосных штанг 100 об/мин. Производят отбор высоковязкой нефти винтовым насосом 3, при этом высоковязкая нефть через интервалы перфорации 9 пласта 10 и нижний конец колонны НКТ 2 попадает на прием винтового насоса 3, который перекачивает высоковязкую нефть по колонне НКТ 2 на устье скважины 1. Одновременно производят подачу деэмульгатора дозировочным насосом 6 из емкости 5 с устья скважины 1 по капиллярной трубке 4 в колонну НКТ 2 на расстоянии 0,2 м от ее нижнего конца.

В процессе отбора высоковязкой нефти винтовым насосом 3 деэмульгатор, подающийся в колонну НКТ 2 на расстоянии 0,2 м от ее нижнего конца, разрушает высоковязкие водонефтяные эмульсии с содержанием смол и парафинов до достижения высоковязкой нефтью приема винтового насоса 3, что снижает нагрузку на привод (колонну штанг 8) винтового насоса 3.

В процессе отбора высоковязкой нефти периодически, например через каждые 24 ч, определяют нагрузку на привод винтового насоса 3 по току, так при росте нагрузки до 40 А снижают частоту вращения колонны насосных штанг до 60 об/мин и прекращают подачу деэмульгатора по капиллярной трубке 4 в колонну НКТ 2.

Например, через 24 ч после запуска в работу винтового насоса 3 определили, что нагрузка на привод винтового насоса 3 по току составила 26 А. Далее продолжили одновременный отбор высоковязкой нефти винтовым насосом 3 по колонне НКТ 2 из скважины 1 и подачу из емкости 5 дозировочным насосом 6 деэмульгатора по капиллярной трубке 4 в колонну НКТ 2.

Спустя еще 24 ч определили, что нагрузка на привод винтового насоса 3 по току составила 34 А. Далее продолжили одновременный отбор высоковязкой нефти винтовым насосом 3 по колонне НКТ 2 из скважины 1 и подачу из емкости 5 дозировочным насосом 6 деэмульгатора по капиллярной трубке 4 в колонну НКТ 2.

Спустя еще 24 ч (т.е. через 24 ч + 24 ч + 24 ч = 72 ч) после запуска винтового насоса 3 определили, что нагрузка на привод винтового насоса 3 по току составила 40 А. Снизили частоту вращения колонны насосных штанг до 60 об/мин и прекратили подачу деэмульгатора по капиллярной трубке 4 в колонну НКТ 2.

В межколонное пространство 11 скважины 1 посредством геофизического подъемника 12 на геофизическом кабеле 13 спускают наконечник 14 и производят ИВЧТА обработку скважины, не прерывая отбора высоковязкой нефти из скважины 1.

При проведении ИВЧТА обработки скважины 1 осуществляют термическое и вибромеханическое (акустическое) воздействие по всему тракту размещения геофизического кабеля по глубине скважины за счет передачи по нему сверхмощных и коротких высокочастотных импульсов, режима генерирования и передачи высокоплотной и высокочастотной энергии по кабелю в виде коротких высокочастотных и мощных импульсов на глубину скважины следующим образом.

В ствол скважины 1 спускают, например, со скоростью 0,5 м/с наконечник 14 (термоакустический излучатель), соединенный посредством геофизического кабеля 13 с наземным ультразвуковым генератором (не показан) мощностью 4-30 кВт. Ультрозвуковой генератор размещен внутри геофизического подъемника 12 и расположен рядом с пультом управления оператора. Ультрозвуковой генератор подает по геофизическому кабелю, например, марки КГ 7×0,75-75-150 на теромоакустический излучатель короткие высокочастотные и мощные импульсы. Например, со следующими характеристиками импульсов: амплитуда - 500-800 мкм, длительность - 0,2 0,4 с, форма - синусоида, частота следования - 25-36 кГц.

Специальная форма импульсов, длительность и восстанавливающие разделяющую изоляцию меры между импульсами позволяют передать в этом режиме по кабелю с ограниченным поперечным сечением среднюю электрическую мощность в 5-10 раз больше, чем при постоянном или переменном токе.

Во время передачи мощных импульсов вследствие высокой частоты изменения тока в них и поверхностного экранного эффекта происходит выделение тепла в металле колонны НКТ 2 по типу индукционного высокочастотного нагрева, а из-за высокого уровня мощности и возникновения ударных электродинамических сил создается по всему тракту передачи упругая механическая волна в металле колонны НКТ 2 и тем самым осуществляется высокочастотное виброакустическое воздействие на высоковязкую нефть, находящуюся внутри колонны НКТ 2.

Таким образом, создаются условия для возникновения индукционного высокочастотного нагрева и передачи упругой механической волны в металле колонны НКТ, и в результате обеспечивается необходимое эффективное воздействие на высоковязкую нефть внутри колонны НКТ, т.е. достигается заявленный технический результат.

В процессе проведения ИВЧТА обработки скважины 1 производят периодическое, например через каждые 12 ч, определение нагрузки по току на привод (колонну штанг 8) винтового насоса 3 до достижения значения по току 15 А. Например, через 12 ч после начала ИВЧТА обработки нагрузка по току на привод винтового насоса 3 достигла значения 32 А. Спустя еще 12 ч непрерывной ИВЧТА обработки скважины 1 нагрузка по току на привод винтового насоса 3 достигла значения 24 А. Спустя еще 12 ч (т.е. через 12 ч + 12 ч + 12 ч = 36 ч) непрерывной ИВЧТА обработки скважины 1 нагрузка по току на привод винтового насоса 3 достигла значения 15 А.

Повышается эффективность реализации способа, так как подача химического реагента (деэмульгатора) осуществляется в нижний конец колонны НКТ 2, что позволяет разрушить высоковязкие водонефтяные эмульсии с содержанием смол и парафинов до достижения высоковязкой нефтью приема винтового насоса 3, что снижает нагрузку на привод (колонну штанг 8) винтового насоса 3.

Кроме того, происходит попеременное воздействие на АСПО и водонефтяную эмульсию химическим реагентом (деэмульгатором) и ИВЧТА обработкой скважины, что позволяет увеличить эффективность очистки скважины и колонны НКТ от АСПО и разрушить водонефтяную эмульсию, тем самым по сравнению с прототипом значительно снизить нагрузки на насос (привод насоса) и, как следствие, снизить энергетические затраты на единицу (м3) отбираемой нефти.

После чего ИВЧТА обработку скважины прекращают и восстанавливают частоту вращения колонны насосных штанг до 100 об/мин.

Извлекают из межколонного пространства 11 скважины 1 наконечник 14 с геофизическим кабелем 13.

Повышается надежность реализации способа, так как периодический контроль нагрузки по току (до 40 А) на привод насоса позволяет не допустить аварийную остановку насоса по причине отложения АСПО и/или водонефтяной эмульсии на приеме насоса и в колонне труб и провести предупреждающую ИВЧТА обработку скважины, не допустив отказа насоса в работе, и продолжить отбор высоковязкой нефти из скважины.

Возобновляют подачу деэмульгатора по капиллярной трубке 4. Таким образом, продолжают одновременный отбор высоковязкой нефти, которая через интервалы перфорации 9 пласта 10 и нижний конец колонны НКТ 2 попадает на прием винтового насоса 3, который перекачивает высоковязкую нефть по колонне НКТ 2 на устье скважины 1, и подачу деэмульгатора дозировочным насосом 6 из емкости 5 по капиллярной трубке 4 в колонну НКТ 2.

По сравнению с прототипом, в котором в случае отказа насоса в работе необходимо извлекать внутрискважинное оборудование (колонну НКТ, насос, капиллярную трубку), необходима бригада ПРС, в предложенном способе исключается проведение ПРС и, как следствие, дополнительные затраты на ПРС, так как проведение ИВЧТА обработки производится без привлечения бригады ПРС с помощью геофизического подъемника, что в 5-6 раз дешевле по сравнению с проведением ПРС.

Периодически определяют нагрузку на привод винтового насоса 3 по току и при росте нагрузки до 40 А вышеописанные операции с применением ИВЧТА обработки скважины 1 повторяют, как описано выше.

Реализация предлагаемого способа позволяет сохранить объемы отбора высоковязкой нефти из скважины, так как в процессе проведения ИВЧТА обработки скважины насос продолжает работать, а при проведении ПРС насос отключают.

Предлагаемый способ подачи реагента и обработки скважины с высоковязкой нефтью позволяет:

- повысить эффективность обработки скважины;

- повысить надежность способа;

- исключить привлечение бригады ПРС для восстановления отбора высоковязкой нефти из скважины;

- увеличить объемы отбора высоковязкой нефти из скважины.

Способ подачи реагента и обработки скважины с высоковязкой нефтью, включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) с насосом, кабеля питания электродвигателя насоса и капиллярной трубки, одновременный отбор нефти и подачу химического реагента дозировочным насосом с устья скважины по капиллярной трубке на прием насоса, отличающийся тем, что в качестве насоса используют винтовой насос с приводом от колонны насосных штанг, а в качестве химического реагента, дозируемого по капиллярной трубке, используют деэмульгатор, запускают в работу привод винтового насоса с частотой вращения колонны штанг 100 об/мин, подачу химического реагента производят дозировочным насосом по капиллярной трубке в колонну НКТ на расстоянии 0,2 м от ее нижнего конца, при этом в процессе отбора высоковязкой нефти периодически определяют нагрузку на привод винтового насоса по току, так при росте нагрузки до 40 А снижают частоту вращения колонны штанг до 60 об/мин, после чего прекращают подачу деэмульгатора по капиллярной трубке в колонну НКТ, в межколонное пространство скважины на геофизическом кабеле спускают наконечник и производят импульсную высокочастотную термоакустическую (ИВЧТА) обработку скважины, не прерывая отбора высоковязкой нефти из скважины, в процессе проведения ИВЧТА обработки скважины производят периодическое определение нагрузки по току на привод винтового насоса через каждые 12 ч до достижения значения по току 15 А, затем восстанавливают частоту вращения колонны штанг до 100 об/мин, после чего ИВЧТА обработку скважины прекращают, извлекают из межколонного пространства скважины наконечник с геофизическим кабелем и возобновляют подачу деэмульгатора по капиллярной трубке, продолжают одновременный отбор высоковязкой нефти и подачу деэмульгатора дозировочным насосом по капиллярной трубке.
СПОСОБ ПОДАЧИ РЕАГЕНТА И ОБРАБОТКИ СКВАЖИНЫ С ВЫСОКОВЯЗКОЙ НЕФТЬЮ
СПОСОБ ПОДАЧИ РЕАГЕНТА И ОБРАБОТКИ СКВАЖИНЫ С ВЫСОКОВЯЗКОЙ НЕФТЬЮ
Источник поступления информации: Роспатент

Показаны записи 551-556 из 556.
10.07.2019
№219.017.b10a

Способ определения пластового давления в нагнетательных скважинах

Изобретение относится к области добычи нефти и может быть использовано для определения пластового давления в нагнетательных скважинах. Способ определения пластового давления включает закачку рабочего агента в пласт и измерение забойного давления. Зона вскрытия пласта в скважине сверху и снизу...
Тип: Изобретение
Номер охранного документа: 0002441152
Дата охранного документа: 27.01.2012
10.07.2019
№219.017.b110

Способ разработки залежи высоковязкой нефти

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения высоковязкой нефти. Обеспечивает повышение нефтеотдачи пласта путем повышения эффективности процесса вытеснения высоковязкой нефти за счет возможности контроля температуры продукции, отбираемой...
Тип: Изобретение
Номер охранного документа: 0002441148
Дата охранного документа: 27.01.2012
10.07.2019
№219.017.b119

Способ разработки месторождения высоковязкой нефти

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения высоковязкой нефти. Технической - повышение эффективности процесса вытеснения высоковязкой нефти за счет возможности контроля температуры продукции, отбираемой из добывающей скважины, и...
Тип: Изобретение
Номер охранного документа: 0002440489
Дата охранного документа: 20.01.2012
10.07.2019
№219.017.b121

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности и предназначено для временного перекрытия ствола скважины при проведении изоляционных работ при капитальном ремонте скважин, исследовании и обработке пластов. Обеспечивает надежность фиксации пакер-пробки в скважине при высоких давлениях,...
Тип: Изобретение
Номер охранного документа: 0002440484
Дата охранного документа: 20.01.2012
12.07.2019
№219.017.b32b

Насосная установка для одновременно-раздельной эксплуатации двух пластов в скважине

Изобретение относится к насосным установкам для одновременно-раздельной эксплуатации двух пластов. Насосная установка для одновременно-раздельной эксплуатации двух пластов в скважине содержит колонну лифтовых труб, колонну штанг, основной пакер, хвостовик с основным каналом, вход которого...
Тип: Изобретение
Номер охранного документа: 0002405924
Дата охранного документа: 10.12.2010
12.07.2019
№219.017.b32c

Насосная установка для одновременно-раздельной эксплуатации двух пластов в скважине

Изобретение относится к насосным установкам для одновременно-раздельной эксплуатации двух пластов. Насосная установка для одновременно-раздельной эксплуатации двух пластов в скважине содержит колонну лифтовых труб, колонну штанг или колонну полых штанг, основной пакер, хвостовик с основным...
Тип: Изобретение
Номер охранного документа: 0002405923
Дата охранного документа: 10.12.2010
Показаны записи 601-610 из 615.
27.06.2020
№220.018.2b81

Плашечный превентор для скважин с наклонным устьем

Изобретение относится к оборудованию для герметизации устья наклонных скважин сверхвязкой нефти (СВН) при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений (НГВП), в том числе оснащенных двухрядной колонной труб. Плашечный превентор...
Тип: Изобретение
Номер охранного документа: 0002724703
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2b9f

Стенд для опрессовки превентора в скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для опрессовки превентора в наклонной скважине и/или на стендовой скважине базы производственного обслуживания. Стенд для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора, наружную...
Тип: Изобретение
Номер охранного документа: 0002724724
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2bc4

Противовыбросовое устройство для скважин с наклонным устьем

Изобретение относится к оборудованию для герметизации устья нефтяных и газовых скважин при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений (НГВП) на скважинах сверхвязкой нефти (СВН) с наклонным устьем, в том числе с двухрядной...
Тип: Изобретение
Номер охранного документа: 0002724711
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c55

Превентор со сменным кольцом и способ его установки на опорном фланце устьевой арматуры

Изобретение относится к устройствам, используемым в превенторах, предназначенных для герметизации устья нефтяных и газовых скважин с различными типами опорных фланцевых устьевых арматур, в том числе скважин сверхвязкой нефти (СВН) с наклонным устьем и двухрядной колонной труб. Техническими...
Тип: Изобретение
Номер охранного документа: 0002724695
Дата охранного документа: 25.06.2020
18.07.2020
№220.018.3494

Способ разработки многопластовой нефтяной залежи с применением гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке многопластовой нефтяной залежи с применением гидравлического разрыва пласта (ГРП). Способ включает закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие...
Тип: Изобретение
Номер охранного документа: 0002726694
Дата охранного документа: 15.07.2020
21.04.2023
№223.018.50aa

Способ проведения последовательного спуска в скважину двух колонн труб с внутрискважинным оборудованием и устройство для его осуществления

Изобретение относится средствам герметизации устья нефтяных и газовых скважин при проведении спуско-подъёмных операций (СПО) в скважинах, оснащённых двухрядной колонной труб. Техническим результатом является упрощение и обеспечение последовательного выполнения СПО с двумя колоннами труб с...
Тип: Изобретение
Номер охранного документа: 0002794031
Дата охранного документа: 11.04.2023
14.05.2023
№223.018.55a9

Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности, в частности к устройствам для поинтервального перфорирования скважин гидроабразивной струей направленного действия с предварительным отсечением интервала перфорации пакер-пробкой и последующим проведением гидроразрыва пласта через...
Тип: Изобретение
Номер охранного документа: 0002738059
Дата охранного документа: 07.12.2020
14.05.2023
№223.018.563d

Способ изоляции заколонных перетоков в добывающей скважине

Изобретение относится к нефтяной промышленности и может найти применение при ремонте заколонного пространства добывающей скважины при возникновении заколонных перетоков жидкости между пластами. Сущность способа заключается в том, что в кровле обводненного пласта выполняют горизонтальные каналы...
Тип: Изобретение
Номер охранного документа: 0002739181
Дата охранного документа: 21.12.2020
14.05.2023
№223.018.56fe

Превентор для скважины с наклонным устьем и двухрядной колонной труб

Изобретение относится к оборудованию для герметизации устья нефтяных и газовых скважин при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений, в том числе на скважинах сверхвязкой нефти с наклонным устьем и двухрядной колонной труб,...
Тип: Изобретение
Номер охранного документа: 0002733867
Дата охранного документа: 07.10.2020
21.05.2023
№223.018.6824

Клапан механический циркуляционный

Изобретение относится к области эксплуатации нефтегазовых скважин, а именно к клапанным устройствам, и может быть использовано для различных технологических операций при эксплуатации и ремонте скважин. Клапан механический циркуляционный содержит корпус, установленный на колонне...
Тип: Изобретение
Номер охранного документа: 0002794702
Дата охранного документа: 24.04.2023
+ добавить свой РИД