×
10.08.2016
216.015.5348

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ

Вид РИД

Изобретение

№ охранного документа
0002594176
Дата охранного документа
10.08.2016
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле W=(ME-ε)/3ε, где М=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта. 1 ил.
Основные результаты: Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, отличающийся тем, что помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт, и влагосодержание нефтепродукта W определяют по формуле ,где M=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ определения влагосодержания нефтепродукта в диэлектрическом трубопроводе, включающий возбуждение электромагнитных колебаний в открытом резонаторе, образованном двумя четвертьсферическими отражателями, установленными диаметрально на наружной поверхности диэлектрического трубопровода. Согласно данному техническому решению (см. RU 2131600 С1, 10.06.1999) по преобразованию резонансной частоты открытого резонатора и ширины его резонансной кривой на уровне половины мощности определяют величину влагосодержания нефтепродукта.

Недостатком этого известного способа является сложность преобразования величины отношения резонансной частоты к ширине резонансной кривой на уровне половины мощности, приводящей к снижению точности определения влагосодержания.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения объемного влагосодержания обводненного нефтепродукта, заполняющего металлический сосуд (см. RU 2279666 С1, 10.07.2006). В этом способе при воздействии на обводненный нефтепродукт электромагнитными волнами, путем произведения высоты слоя воды при ее расслоении в металлическом сосуде, измеренной амплитудой прошедшей через нефтепродукт волны, и внутренней площади основания сосуда, занимаемой этим слоем воды в сосуде, определяют объемное влагосодержание нефтепродукта в металлическом сосуде.

Недостатком этого способа можно считать погрешность, связанную с неточностью измерения внутренней площади основания сосуда.

Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания.

Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле

W=(ME4н)/3εн,

где М=(υ1λB)2/(υ12); υ1 и υ2 - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, εн - диэлектрическая проницаемость нефтепродукта.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение скоростей распространения двух ортогонально поляризованных волн при искусственной анизотропии в контролируемой среде дает возможность определить малое влагосодержание нефтепродукта в диэлектрическом сосуде. Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения малого влагосодержания нефтепродукта в диэлектрическом сосуде на основе измерения скоростей распространения двух ортогонально поляризованных волн при искусственной анизотропии в контролируемой среде с желаемым техническим результатом, т.е. повышением точности измерения малого влагосодержания.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, первый элемент приема поляризованной волны 2, второй элемент приема поляризованной волны 3, 4 и 5 электроды, первый измеритель скорости поляризованной волны 6, второй измеритель скорости поляризованной волны 7, вычислитель влагосодержания 8. На фигуре цифрой 9 обозначен диэлектрический сосуд.

Предлагаемый способ работает следующим образом. Предварительно диэлектрический сосуд (прозрачный) с обводненным нефтепродуктом помещают в электрическое поле, образованное двумя электродами. В результате обводненный нефтепродукт с малым содержанием воды может стать анизотропным веществом. После этого если прозондировать данное искусственно анизотропное вещество электромагнитными волнами (зондирующие волны направляются параллельно силовым линиям приложенного электрического поля), то при взаимодействии этих волн с этим веществом, в последнем, возникнут ортогонально поляризованные волны, распространяющиеся параллельно и перпендикулярно силовым линиям приложенного к нефтепродукту электрического поля. При этом из-за разности преломления волн в данном веществе, поляризованная волна, распространяющаяся параллельно силовым линиям электрического поля, будет иметь одну скорость распространения, а поляризованная волна, распространяющаяся перпендикулярно силовым линиям электрического поля, - другую скорость. В данном случае из-за искусственно анизотропии в веществе, скорость распространения поляризованной волны, распространяющейся параллельно силовым линиям приложенного к веществу электрического поля, будет опережать скорость распространения поляризованной волны, распространяющейся перпендикулярно силовым линиям электрического поля. В силу этого для скорости распространения поляризованной волны, направленной параллельно силовым линиям электрического поля, можно записать

где υпар - скорость поляризованной волны, направленной параллельно силовым линиям электрического поля, n - показатель преломления вещества в отсутствии анизотропии, Δn - показатель преломления волны (наличие анизотропии в веществе), поляризованной параллельно силовым линиям зондирующей волны, с - скорость света в вакууме. Для скорости распространения поляризованной волны, направленной перпендикулярно силовым линиям приложенного электрического поля можно принимать

где υпер - скорость поляризованной волны, направленной перпендикулярно силовым линиям электрического поля.

В рассматриваемом случае формулу (1) ввиду того, что показатель преломления Δn может изменяться на величину λВЕ2 (воздействие приложенного к диэлектрическому сосуду электрического поля), можно переписать как

Совместное преобразование выражений (1) и (3) дает возможность записать, что

Известно, что показатель преломления n можно вычислить как

где ε - диэлектрическая проницаемость вещества, µ - магнитная проницаемость вещества. При условии µ=1, формулу (4) с учетом последнего выражения можно переписать как

Обозначим М=(υпарλВ)2/(υпарпер)2. Тогда для s получаем

ε=ME4.

Известно, что при малых значениях влагосодержания в нефтепродукте (см. Теория и практика экспрессного контроля влажности твердых и жидких материалов / под ред. Е.С. Кричевского. М.: Энергия, 1980, 240 с.), для зависимости между диэлектрической проницаемостью водоэмульсионной смеси и влагосодержанием в ней с учетом диэлектрической проницаемостью нефтепродукта, можно записать

где εсм - диэлектрическая проницаемость водоэмульсионной смеси.

В данном случае с определенной точностью принимается, что в формулу (5) вместо 8 можно положить εсм из формулы (6). Тогда совместное преобразование выражений (5) и (6) дает возможность вычислить влагосодержание следующим образом:

Из последнего выражения видно, что при постоянных значениях Е, В, X и εн измерением скоростей υпар и υпер можно определить малое влагосодержание в нефтепродукте.

Устройство, реализующее предлагаемое техническое решение, работает следующим образом. Диэлектрический сосуд 9 с обводненным нефтепродуктом помещают в электрическое поле, образованное электродами 4 и 5. С выхода генератора электромагнитных колебаний 1 направляют электромагнитную волну в обводненный нефтепродукт так, чтобы направление распространения волны было параллельным силовым линям приложенного к веществу электрического поля. После этого в силу поляризации электромагнитной волны в веществе из-за его искусственной анизотропии принимают две ортогонально поляризованные волны. При этом первым элементом приема 2 принимают поляризованную волну, распространяющуюся параллельно силовым линиям электрического поля, а вторым элементом приема 3 - поляризованную волну, распространяющуюся перпендикулярно силовым линиям электрического поля. Далее с выходов первого и второго элементов приема сигналы направляют соответственно на входы первого и второго измерителей скоростей 6 и 7. Далее выходные сигналы этих измерителей скоростей, соответствующие значениям скоростей распространения через обводненный нефтепродукт ортогонально двух поляризованных волн, поступают на первый и второй входы вычислителя влагосодержания 8. Здесь после их преобразования согласно алгоритму (7) можно определить малое влагосодержание в нефтепродукте в диэлектрическом сосуде.

Перед измерением, для получения достоверной информации о влагосодержании в нефтепродукте, диэлектрический сосуд с обводненным нефтепродуктом целесообразно взбалтывать.

Таким образом, в предлагаемом техническом решении, на основе измерения скоростей распространения через искусственно анизотропный диэлектрический сосуд с обводненным нефтепродуктом двух ортогонально поляризованных волн, можно обеспечить повышение точности измерения малого влагосодержания.

Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, отличающийся тем, что помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт, и влагосодержание нефтепродукта W определяют по формуле ,где M=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта.
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 282.
10.11.2015
№216.013.8bfc

Бесконтактное радиоволновое устройство для измерения частоты вращения

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения частоты вращения. Бесконтактное радиоволновое устройство измерения частоты вращения, содержащее генератор электромагнитных волн фиксированной частоты, направленный ответвитель, циркулятор,...
Тип: Изобретение
Номер охранного документа: 0002567443
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c02

Устройство для измерения малых величин толщины льда

Изобретение относится к области измерительной техники и может быть использовано в системах контроля технологических процессов. Устройство для измерения малых величин толщины льда содержит микроволновый генератор и полую цилиндрическую герметичную эластичную оболочку. Кроме того, в устройство...
Тип: Изобретение
Номер охранного документа: 0002567449
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9131

Способ передачи сообщений оптическими сигналами между устройствами рефлективной памяти

Изобретение относится к вычислительной технике. Технический результат заключается в ускорении обслуживания запросов абонентов на передачу сообщений. Способ передачи сообщений оптическими сигналами между устройствами рефлективной памяти (УРП), объединенными оптическим каналом из двух линий, в...
Тип: Изобретение
Номер охранного документа: 0002568785
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9471

Способ управления охлаждением слитка в машине непрерывного литья

Изобретение относится к области металлургии, в частности автоматического управления процессом получения непрерывнолитых заготовок с равномерной макроструктурой для производства прокатных высокопрочных металлических изделий. Управление охлаждением слитка осуществляется в трех контурах: контуре...
Тип: Изобретение
Номер охранного документа: 0002569620
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9968

Способ генерирования переменной эдс при возвратно-поступательном движении

Изобретение относится к электротехнике, к получению электрической энергии при колебании различных механических устройств и может быть использовано, в частности, для генерирования переменного тока при колебании некоторых узлов транспортных средств. Технический результат состоит в получении...
Тип: Изобретение
Номер охранного документа: 0002570897
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f78

Измеритель расхода потока среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Измеритель расхода потока содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель...
Тип: Изобретение
Номер охранного документа: 0002572461
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.9fae

Способ ускорения нейтральных микрочастиц

Изобретение относится к ускорению микрочастиц и может найти применение в качестве ускорителя элементарных частиц, например атомов, лишенных заряда. Технический результат состоит в повышении к.п.д. и снижении расхода исследуемых образцов. Поток микрочастиц фокусируют на выходе ускорителя за счет...
Тип: Изобретение
Номер охранного документа: 0002572520
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a0dc

Способ удаленного проводного электропитания объектов

Изобретение относится к области электротехники и может быть использовано для дистанционного электропитания привязных летательных аппаратов или привязных подводных робототехнических объектов. Технический результат заключается в снижении габаритно-массовых характеристик, увеличении надежности,...
Тип: Изобретение
Номер охранного документа: 0002572822
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a401

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель...
Тип: Изобретение
Номер охранного документа: 0002573627
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c952

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических...
Тип: Изобретение
Номер охранного документа: 0002578742
Дата охранного документа: 27.03.2016
Показаны записи 91-100 из 191.
10.11.2015
№216.013.8bfc

Бесконтактное радиоволновое устройство для измерения частоты вращения

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения частоты вращения. Бесконтактное радиоволновое устройство измерения частоты вращения, содержащее генератор электромагнитных волн фиксированной частоты, направленный ответвитель, циркулятор,...
Тип: Изобретение
Номер охранного документа: 0002567443
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c02

Устройство для измерения малых величин толщины льда

Изобретение относится к области измерительной техники и может быть использовано в системах контроля технологических процессов. Устройство для измерения малых величин толщины льда содержит микроволновый генератор и полую цилиндрическую герметичную эластичную оболочку. Кроме того, в устройство...
Тип: Изобретение
Номер охранного документа: 0002567449
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9131

Способ передачи сообщений оптическими сигналами между устройствами рефлективной памяти

Изобретение относится к вычислительной технике. Технический результат заключается в ускорении обслуживания запросов абонентов на передачу сообщений. Способ передачи сообщений оптическими сигналами между устройствами рефлективной памяти (УРП), объединенными оптическим каналом из двух линий, в...
Тип: Изобретение
Номер охранного документа: 0002568785
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9471

Способ управления охлаждением слитка в машине непрерывного литья

Изобретение относится к области металлургии, в частности автоматического управления процессом получения непрерывнолитых заготовок с равномерной макроструктурой для производства прокатных высокопрочных металлических изделий. Управление охлаждением слитка осуществляется в трех контурах: контуре...
Тип: Изобретение
Номер охранного документа: 0002569620
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9968

Способ генерирования переменной эдс при возвратно-поступательном движении

Изобретение относится к электротехнике, к получению электрической энергии при колебании различных механических устройств и может быть использовано, в частности, для генерирования переменного тока при колебании некоторых узлов транспортных средств. Технический результат состоит в получении...
Тип: Изобретение
Номер охранного документа: 0002570897
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f78

Измеритель расхода потока среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Измеритель расхода потока содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель...
Тип: Изобретение
Номер охранного документа: 0002572461
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.9fae

Способ ускорения нейтральных микрочастиц

Изобретение относится к ускорению микрочастиц и может найти применение в качестве ускорителя элементарных частиц, например атомов, лишенных заряда. Технический результат состоит в повышении к.п.д. и снижении расхода исследуемых образцов. Поток микрочастиц фокусируют на выходе ускорителя за счет...
Тип: Изобретение
Номер охранного документа: 0002572520
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a0dc

Способ удаленного проводного электропитания объектов

Изобретение относится к области электротехники и может быть использовано для дистанционного электропитания привязных летательных аппаратов или привязных подводных робототехнических объектов. Технический результат заключается в снижении габаритно-массовых характеристик, увеличении надежности,...
Тип: Изобретение
Номер охранного документа: 0002572822
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a401

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель...
Тип: Изобретение
Номер охранного документа: 0002573627
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c952

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических...
Тип: Изобретение
Номер охранного документа: 0002578742
Дата охранного документа: 27.03.2016
+ добавить свой РИД